• 제목/요약/키워드: Fatigue materials

검색결과 1,404건 처리시간 0.027초

이종재료 레이저 용접부의 피로거동 (The Fatigue Behavior of Laser Weldment in Heterogeneous Materials)

  • 권응관;오택열;곽대순;이종재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.759-764
    • /
    • 1997
  • In this study, Fatigue behavior of laser weldment in heterogeneous materials was investigated. Fatigue strength test and fatigue crack propagation test were performed for specimens with laser weldment in heterogeneous materials, and hardness test was performed. From the fatigue strength test. it was observed that the difference of strength between heterogeneous materials had eflect on crack initiation position and fatigue limit. From the fatigue crack propagation test. it was observed that fatigue behavior of laser weldment in heterogeneous materials is different from that in same materials. The difference of strength between heterogeneous materials and laser weldment had effect on fatigue crack propagation rate.

  • PDF

복합재료의 피로손상 모형 및 다응력 수위 피로수명 예측 연구 (II) - 참고계수를 이용한 피로 손상 모형 - (Study on Fatigue Damage Model and Multi-Stress Level Fatigue Life Prediction of Composite Materials (II) -Fatigue Damage Model using Reference Modulus-)

  • 이창수;황운봉;한경섭
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.62-69
    • /
    • 1999
  • 복합재료가 피로하중을 받으면 재료 내부에 손상이 누적되며, 이는 재료의 물성 변화로 나타난다. 본 연구에서는 손상을 나타내는 인자로 피로계수를 사용하였다. 피로계수와 참고계수로 정의되는 손상함수로부터 복합재료의 피로수명 예측을 이론적으로 연구하였다. 제안된 모델들은 인가 응력 수준, 피로주기 및 피로수명의 함수로 유도하였다. 예측 결과는 유리섬유/에폭시 복합재료와 유리섬유/폴리에스터 복합재료를 사용한 다중응력 피로 실험 데이터를 이용하여 검증하였다.

  • PDF

복합재료의 피로수명 해석 (Fatigue Life Analysis of Composite Materials)

  • 이창수;황운봉;박현철;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.268-271
    • /
    • 1999
  • Fatigue life Prediction is investigated analytically based on the fatigue modulus concept. Fatigue modulus degradation rate at any fatigue cycle was assumed as a power function of number of fatigue cycles. New stress function describing the relation of initial fatigue modulus and elastic modulus was used to account for material non-linearity at the first cycle. It was assumed that fatigue modulus at failure is proportional to applied stress level. A new fatigue life prediction equation as a function of applied stress is proposed. The prediction was verified experimentally using cross-ply carbon/epoxy laminate (CFRP) tube.

  • PDF

Environmental fatigue correction factor model for domestic nuclear-grade low-alloy steel

  • Gao, Jun;Liu, Chang;Tan, Jibo;Zhang, Ziyu;Wu, Xinqiang;Han, En-Hou;Shen, Rui;Wang, Bingxi;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2600-2609
    • /
    • 2021
  • Low cycle fatigue behaviors of SA508-3 low-alloy steel were investigated in room-temperature air, high-temperature air and in light water reactor (LWR) water environments. The fatigue mean curve and design curve for the low-alloy steel are developed based on the fatigue data in room-temperature and high-temperature air. The environmental fatigue model for low-alloy steel is developed by the environmental fatigue correction factor (Fen) methodology based on the fatigue data in LWR water environments with the consideration of effects of strain rate, temperature, and dissolved oxygen concentration on the fatigue life.

Fatigue Characteristics of PZT Thin Films Deposited by ECR-PECVD

  • Chung, Su-Ock;Lee, Won-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.177-185
    • /
    • 2005
  • Fatigue characteristics of lead zirconate titanate (PZT) films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) were investigated. The fatigue characteristics were investigated with respect to PZT film thickness, domain structure, fatigue pulse height, temperature, electrode materials and electrode configurations. The used top and bottom electrode materials were Pt and $RuO_2$. In the fatigue characteristics with fatigue pulse height and PZT film thickness, the fatigue rates are independent of the applied fatigue pulse height at the electric field regions to saturate the P-E hysteresis and polarization $(P^*,\;P^A)$ characteristics. The unipolar and bipolar fatigue characteristics of PZT capacitors with four different electrode configurations $(Pt//Pt,\;Pt//RuO_2,\;RuO_2//Pt,\;and\;RuO_2//RuO_2)$ were also investigated. The polarization-shifts during the unipolar fatigue and the temperature dependence of fatigue rate suggest that the migration of charged defects should not be expected in our CVD-PZT films. It seems that the polarization degradations are attributed to the formation of charged defects only at the Pt/PZT interface during the domain switching. The charged defects pin the domain wall at the vicinity of Pt/PZT interface. When the top and bottom electrode configurations are of asymmetric $(Pt//RuO_2,\;RuO_2//Pt)$, the internal fields can be generated by the difference of charged defect densities between top and bottom interfaces.

304 스테인리스강의 300℃에서 저주기 피로수명 증가 (Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel)

  • 김대환;한창희;이봉상
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

AZ61 마그네슘 압출재의 압출 온도에 따른 기계적 특성 및 고주기 피로 특성 (Effect of Extrusion Temperature on Mechanical Properties and High-cycle Fatigue Properties of Extruded AZ61 Alloy)

  • 김예진;차재원;김영민;박성혁
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, a commercial AZ61 magnesium alloy is extruded at 300 ℃ and 400 ℃ and the microstructures, mechanical properties, and high-cycle fatigue properties of the extruded materials are investigated. Both extruded materials have a fully recrystallized microstructure with no Mg17Al12 precipitates. The average grain size and maximum basal texture intensity of the extruded material increase with increasing extrusion temperature. The material extruded at 400 ℃ (AZ61-400) has higher tensile yield strength and lower compressive yield strength than the material extruded at 300 ℃ (AZ61-300) because of the stronger basal texture of the former. Because of coarser grain size, the tensile elongation of AZ61-400 is lower than that of AZ61-300. Despite the differences in microstructures and tensile/compressive properties, the two extruded materials have the same fatigue strength of 110 MPa. This is because the finer grain size of AZ61-300 causes an increase in fatigue strength, but its weaker texture causes a decrease in fatigue strength. In both extruded materials, fatigue cracks initiate at the surface of fatigue specimens at all stress amplitudes tested.

Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향 (Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy)

  • 김경현;김정대;김인배
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

충격손상을 가진 CFRP 적층복합재료의 피로수명예측모델 (A Model for Fatigue Life In CFRP Laminates with Impact Damage)

  • 강기원;김정규
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2828-2835
    • /
    • 2000
  • This paper presents the fatigue behavior of composite materials with impact-induced damage. The impact damage parameter is proposed to evaluate the effect of impact damage on fatigue life. Subsequently, a new model is developed to predict the fatigue life of impacted composite materials. Also, a stochastic model is proposed to describe the variation of fatigue life due to the material nonhomogeneity. For these models, the fatigue tests were performed on the unimpacted and impacted composite materials, The effect of impact damage on fatigue life can be characterized by the impact damage parameter. Additionally, the results by the present fatigue life prediction model agree will with experimental results regardless of applied impact energy. Also, the variation of fatigue life can be described by the present stochastic model and is reduced with applied impact energy.

충격손상 CFRP 적층복합재료의 피로특성 (Fatigue Characteristics in CFRP Laminates with Impact Damage)

  • 강기원;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.225-230
    • /
    • 2000
  • This paper presents the fatigue behavior of composite materials with impact-induced damage. The impact damage parameter is proposed to evaluate the effect of impact damage on fatigue life. Subsequently, a new model is developed to predict the fatigue life of impacted composite materials. Also, a stochastic model is proposed to describe the variation of fatigue life due to the material nonhomogeneity. For these models, the fatigue tests were performed on the unimpacted and impacted composite materials. The effect of impact damage on fatigue life can be characterized by the impact damage parameter. Additionally, the results by the present fatigue life prediction model agree well with experimental results regardless of applied impact energy. Also, the variation of fatigue life can be described by the present stochastic model and is reduced with applied impact energy.

  • PDF