• 제목/요약/키워드: Fatigue design

검색결과 1,881건 처리시간 0.034초

항공기 피로수명 입증방법 연구 (Study on aircraft fatigue life substantiation method)

  • 김성준;김태욱
    • 한국항공운항학회지
    • /
    • 제24권1호
    • /
    • pp.41-46
    • /
    • 2016
  • This paper reviews and summarizes overall fatigue substantiation method of aircraft. The fatigue substantiation method has been studied using the related regulation and examples of industry application. And the comparisons of fatigue substantiation procedure between safe-life and damage tolerance design have been performed. Fatigue substantiation methods have wide variability depend on design methodology and type of aircraft such as fixed wing and rotorcraft. In this study, fatigue substantiation methodologies have been reviewed using analysis and test methods.

CAE 기법을 이용한 서스펜션 너클의 피로수명 평가 (Fatigue Life Prediction of Suspension Knuckle by CAE Technology)

  • 김영진;서명원;서상민;서재호;김중재
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.112-121
    • /
    • 1995
  • Various CAE technologies are used in automobile industries for the purpose of design and analysis. In this paper, a fatigue life evaluation system FLEVA based on the local strain approach is developed and the system is applied for the fatigue strength design of the suspension knuckle, an automobile component. Various steps such as material test, finite element analysis and cumulative fatigue damage analysis of the suspension knuckle were taken. The usefulness of the approach was verified by the fatigue test on the suspension knuckle.

  • PDF

Fatigue experiment of stud welded on steel plate for a new bridge deck system

  • Ahn, Jin-Hee;Kim, Sang-Hyo;Jeong, Youn-Ju
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.391-404
    • /
    • 2007
  • This paper presents push-out tests of stud shear connectors to examine their fatigue behavior for developing a new composite bridge deck system. The fifteen push-out specimens of D16 mm stud welded on 9 mm steel plate were fabricated according to Eurocode-4, and a series of fatigue endurance test and residual strength test were performed. Additionally, the stiffness and strength variations by cyclic loading were compared. The push-out test, when the stiffness reduction ratio of the specimens was 0.95 under cyclic load, resulted in the failure of the studs. The stiffness variation of the push-out specimens additionally showed that the application of cyclic loads reduced the residual strength. The fatigue strength of the shear connectors were compared with the design values specified in the Eurocode-4, ASSHTO LRFD and JSSC codes. The comparison result showed that the fatigue endurance of the specimens satisfies the design values of these codes.

대차프레임의 피로설계 및 피로강도 평가 (Fatigue Design and Fatigue Strength Evaluation of Bogie Frame)

  • 이상록;이학주;한승우;김정엽;차정환;강재윤;박찬경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.234-241
    • /
    • 2000
  • Stress analysis of the bogie frame by using the finite element method has been performed for the various loading conditions according to the results of vehicle dynamics analysis. Multiaxial fatigue analysis methods such as signed von Mises method, and typical critical plane theories were reviewed, and margin of safety for fatigue is defined. Multiaxial fatigue analysis program to predict the margin of safety of bogie frame under non-proportional loading conditions has been developed by using a commercial command language. Fatigue analysis of bogie frame under multiaxial loading was performed through this program and finite element analysis result. The procedure developed in this study is considered to be useful for the fatigue strength analysis in preliminary design stage of railway components under multiaxial loading condition.

  • PDF

십자형 필릿 용접부에서의 피로파괴 형상과 특성 (Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint)

  • 이용복;정준기;박상흡
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

파워스티어링 오일펌프용 풀리의 피로수명을 고려한 형상최적화 (Shape Optimization Considering Fatigue Life of Pulley in Power-Steering Pulley)

  • 심희진;김정규
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1041-1048
    • /
    • 2006
  • The pulley is one of core mechanical elements in the power steering system for vehicles. The pulley operates under both the compressive loading and the torque. Therefore, to assure the safety of the power steering system, it is very important to investigate the durability and the optimization of the pulley. In this study, the applied stress distribution of the pulley under high tension and torsion loads was obtained by using finite element analysis. Based on these results the fatigue life of the pulley with the variation of the fatigue strength was evaluated by a durability analysis simulator. The results at 50% and 1% for the failure probability were compared with respect to the fatigue life. In addition to the optimum design for the fatigue life is obtained by the response surface method. The response function utilizes the function of the life and weight factors. Within range for design life condition the minimization of the weight, one of the formulation, is obtained by the optimal design. Moreover the optimum design by considering its durability and validity is verified by the durability test.

구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구 (An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress)

  • 강성원;김명현;김석훈;하우일
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안 (Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge)

  • 이경찬;윤기용
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.15-21
    • /
    • 2009
  • AASHTO LRFD 설계 기준에 따른 합성형 교량 전단연결재 설계는 주로 강도보다는 피로에 의해 지배되는 것으로 알려져 있다. 이 피로 설계는 1966년 Slutter와 Fisher의 연구에 근거하고 있다. 당시의 시험은 1면으로 수행되었기 때문에 편심이 작용하였고, 이로 인하여 전단연결재에 별도의 인장력이 가해지게 되어 피로 강도가 감소되는 결과를 낳은 것으로 보인다. 또한, 피로 S-N 곡선은 응력변동폭과 하중반복 횟수 각각의 로그 스케일에 대하여 선형 관계를 보이는 것으로 Fisher에 의해 후에 밝혀졌으나, 전단연결재의 경우에 대해서만은 아직도 응력변동폭에 로그를 취하지 않고 있다. 이 연구는 현재 미국, 영국, 유럽, 일본에서 사용 중인 피로 설계 곡선을 비교 검토한 결과 미국 설계 기준이 비교적 보수적인 설계를 하고 있음을 확인하였다. 나아가, 당시의 실험 세팅과 데이터를 재분석하고 최근까지 전 세계에 공개된 피로 실험 데이터를 수집하여 분석 비교하고, 이를 바탕으로 적절한 설계식을 추천하고자 한다.

Wind spectral characteristics on fatigue responses of towerbase and moorings of a floating offshore wind turbine

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.191-218
    • /
    • 2019
  • The tower-platform interface and mooring system of floating offshore wind turbines (FOWTs) are some of the most critical components with significant influences on overall project costs. In addition to satisfying strength requirements, it is typical and vital to meet fatigue criteria for a service life of 25 years or more. Wind spectra characteristics considered in analysis can penalize fatigue designs, leading to unnecessary costs. The International Electrotechnical Commission (IEC, 2009) recommends the use of site-specific wind data (spectrum, turbulence intensity, etc.) in design of FOWTs, but for offshore sites it is often the case that such data is unavailable and land-based data are used as surrogates in design. For such scenarios, it is worth investigating whether such alternative approach is suitable and accurate, and understanding the consequence of the selection of wind spectral characteristics on fatigue design. This paper addresses the impact of the subsequent selection on fatigue responses of towerbase and mooring system in a FOWT, as a sequel to the paper by Udoh and Zou (2018) which focused on impacts on strength design. The 5 MW semi-submersible FOWT platform with six mooring lines implemented in the preceding study is applied in analysis. Results indicate significant variations in resulting fatigue life with considered wind parameters. Thus, it is critical to apply proper wind spectra characteristics for analysis and design of FOWTs to avoid unnecessary conservatism and costs. Based on the findings of this study, more explicit guidance on the application of turbulence intensities for IEC-recommended models in offshore sites could lead to more accurate load estimates in design of FOWTs.