• 제목/요약/키워드: Fatigue crack growth analysis

검색결과 249건 처리시간 0.041초

임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 - Part I: 임플란트 고정체 (Fracture Analysis of Implant Components using Scanning Electron Microscope - Part I : Implant Fixture)

  • 임광길;김대곤;조리라;박찬진
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.297-309
    • /
    • 2010
  • 보철물의 실패는 파절로 인해 다수 발생하게 되지만 파절 발생시 그 원인을 파악하는 것은 어렵다. 보철물의 실패를 예방하고 예후를 예측하기 위해 보철물의 원인을 분석하는 것이 중요하며, 원인을 밝히기 위해 파절면 분석을 시행하게 된다. 파절면 분석은 파절면 뿐 아니라 주위 환경(응력 상황)에 대한 분석이 동반되며, 이를 이용하여 균열 진행, 파절 양상, 파절 원인 등을 파악하게 된다. 이 연구의 목적은 임상적으로 기능 후 파절된 임플란트 고정체의 파절면 분석을 시행하여 파절 기전 및 파절 원인(하중 양상)을 밝히는 것이다. 파절된 임플란트 고정체는 3년간 강릉-원주 대학교에 임플란트 고정체의 파절을 주소로 내원한 환자를 대상으로 수집하였다. 먼저 임상 및 방사선 사진 분석을 하였으며, 시편 세척 과정을 거쳐 주사 전자 현미경을 이용한 파절면 분석을 시행하였다. 임플란트 파절면 분석 시 피로 줄무늬, 벽개 파절 등의 파절 지표를 통해 피로 파절로 인해 파절이 발생되었음을 확인할 수 있었다.

층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석 (The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

항공기 주익구조물의 피로균열 진전 해석 및 실험을 위한 응력 스펙트럼 알고리즘 개발 (Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure)

  • 천영철;장윤정;정태진;강기원
    • 대한기계학회논문집A
    • /
    • 제39권12호
    • /
    • pp.1281-1286
    • /
    • 2015
  • 항공기는 다양한 임무를 수행함으로써 장기간 운영 시 비행시간 누적으로 인해 피로균열을 발생시킬 수 있다. 주익 구조물에 균열이 발생하면 수명단축 등 여러 문제점들이 발생할 수 있다. 이의 해결을 위해 피로임계위치(Fatigue critical location, FCL)에서의 균열진전 해석이 필요하다. 균열진전 해석을 위해서는 장시간의 응력 스펙트럼이 필요한데 실제 항공기에서 필요한 만큼의 데이터를 얻는 것은 막대한 시간과 비이 소요된다. 본 논문에서는 SwRI(South West Research Institute)보고서에 제시되어있는 임무별 단시간 하중배수 자료를 바탕으로 Peak-Valley Cycle Counting 을 진행하여 장시간의 응력 스펙트럼을 산출하는 알고리즘을 개발하였다.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

철도차륜의 구름접촉피로에 의한 수명예측에 관한 연구 (A Study on the Life Span Prediction of Railroad Wheels caused by Rolling Contact Fatigue)

  • 전종균;양진승;박삼진;이규세;마양수
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1012-1020
    • /
    • 2006
  • 철도차량의 차륜에서 발생하는 크랙은 표면으로부터 개시하는 표면크랙, 내부에서 개시하는 내부크랙으로 나눌 수 있고, 이들 크랙은 철도의 안전운행에 위험요소가 된다. 그러므로 이들 크랙의 성장수명 판단은 매우 중요하다. 본 연구에서는 철도차륜의 표면크랙 및 내부크랙의 응력분포상태, 변위 및 성장수명을 연구하였다. 특히 내부 및 표면크랙에 대해 유한요소해석을 실시하여 크랙선단의 응력상태, 변위, 응력확대계수를 찾아내었고, 이를 바탕으로 Paris 공식을 사용하여 성장수명을 예측하였다.

  • PDF

표면미소균열의 극치통계해석을 이용한 피로수명예측 (Prediction of Fatigue Life using Extreme Statistics Analysis)

  • 이동우;홍순혁;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1746-1752
    • /
    • 2002
  • Fatigue fracture in machine components is produced by surface micro-crack from stress concentration area such as notch and material defect. It is difficult to predict the remaining fatigue lift of mechanical components because the surface micro-crack on critical area initiates and grows with statistical distribution. Plane bending fatigue tests were carried out on the plain specimen of Al 2024-T3 and the initiation and growth behavior of surface micro cracks were observed. The statistical distribution of surface length of multiple micro cracks and their maximum length were investigated. The maximum surface crack length distributions were analyzed on the basis of the statistics of extremes in order to examine the prediction of remaining life.

ASME BPVC Section XI Appendix L의 결함허용평가에 따른 허용운전주기 민감도 분석 (Sensitivity Analysis for Allowable Operating Period Based on the Flaw Tolerance Evaluation of ASME BPVC Section XI Appendix L)

  • 오창식;조두호;정명조
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.126-136
    • /
    • 2021
  • During operation of nuclear power plants, the fatigue assessment should be conducted repeatedly, considering changes of operating environments. For the case that cumulative usage factors (CUFs) may exceed the acceptance limit, flaw tolerance evaluation can be an alternative method to meet the regulatory requirements. In this respect, this paper analyzes the effects of the input variables for flaw tolerance evaluation based on ASME BPVC Section XI Appendix L. The reference analysis is performed for the example problem in NUREG/CR-6934. Then effects of the crack orientation, stress intensity factor solutions, thermal stress profiles, fatigue stress decomposition and fatigue crack growth curves are considered for the sensitivity analysis. The results show that the stress analysis considering the actual environment plays a crucial role in flaw tolerance evaluation.

십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰 (A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • 제1권1호
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

저항복비·고강도 구조용 내화강의 피로특성 및 비파괴평가 (Fatigue Characteristics and its Nondestructive Evaluation of Fire-resistance Steel for Construction with Low Yield Ratio and High Strength)

  • 김현수;남기우;강창룡
    • 열처리공학회지
    • /
    • 제14권4호
    • /
    • pp.212-219
    • /
    • 2001
  • The fatigue test was carried out to evaluate the fatigue characteristics of fire resistance steel for frame structure and heat affected zone (HAZ) by the one side Gas Metal Arc Welding (GMAW). In this paper, the fatigue crack growth behavior was investigated with the compact tension specimen of base metal and the HAZ according to chemical composition and rolling end temperature, respectively. And the acoustic emission signals obtained from the fatigue test were analyzed by the time-frequency analysis method as a nondestructive evaluation. Main results obtained are summarized as follows; The hardness was appeared softening phenomenon that weld metal and HAZ are lower than that of base metal. Fatigue life of welded specimen was longer than that of base metal. m was 3~4.5 in base metal and 3.8~5.8 in HAZ. The main frequency range of acoustic emission signal analyzed from time-frequency method is different with the range by noise and crack. Also, it could be classified that it was also generated by fracture mechanics of dimple, inclusion etc.

  • PDF