DOI QR코드

DOI QR Code

Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure

항공기 주익구조물의 피로균열 진전 해석 및 실험을 위한 응력 스펙트럼 알고리즘 개발

  • Received : 2015.04.08
  • Accepted : 2015.11.09
  • Published : 2015.12.01

Abstract

Fatigue cracks can be generated in aircraft as a result of the cumulative time spent during flight operations, which can extend for long periods of time and cover a variety of missions. If a crack occurs in an aircraft's main spar, it can generate many problems, including a lift time reduction. To solve this problem, it was necessary to perform an analysis of fatigue crack growth in the fatigue critical locations. Much time and expense is involved in generating the stress needed for a crack propagation analysis over a long period of time to obtain the amount of data required for an actual aircraft. In this paper, an algorithm is developed that can calculate the spectrum of stress over a long period of time for a mission by the Southwest Research Institute, which is based on the short-time load factor data produced using the peak-valley cycle counting method.

항공기는 다양한 임무를 수행함으로써 장기간 운영 시 비행시간 누적으로 인해 피로균열을 발생시킬 수 있다. 주익 구조물에 균열이 발생하면 수명단축 등 여러 문제점들이 발생할 수 있다. 이의 해결을 위해 피로임계위치(Fatigue critical location, FCL)에서의 균열진전 해석이 필요하다. 균열진전 해석을 위해서는 장시간의 응력 스펙트럼이 필요한데 실제 항공기에서 필요한 만큼의 데이터를 얻는 것은 막대한 시간과 비이 소요된다. 본 논문에서는 SwRI(South West Research Institute)보고서에 제시되어있는 임무별 단시간 하중배수 자료를 바탕으로 Peak-Valley Cycle Counting 을 진행하여 장시간의 응력 스펙트럼을 산출하는 알고리즘을 개발하였다.

Keywords

References

  1. Yoon, Y. I., Kim, S. T., 2010, "Aging Aircraft's Main Damage Characteristics and Effects of Structural Degradation Induced by Pitting Corrosion Fatigue," Proceeding of Spring Conference KSME., pp.101-107.
  2. Kim, W. D., 2007, "Fatigue Life Prediction of Composite Patch for Edge Cracked Aluminum Plate," Trans. of the KSAS., Vol. 35, No. 1, pp. 51-57.
  3. Lee, D. H., Kwon, A. J., You, W. H., Choi, J. B. and Kim, Y. J., 2009, "Evaluation of Fatigue Crack Initiation Life in a Press-Fitted Shaft Considering the Fretting Wear," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No.10, pp.1091-1098. https://doi.org/10.3795/KSME-A.2009.33.10.1091
  4. Hur, J. W., 2010, "Study on Fatigue Life Estimation for Aircraft Engine Support Structure," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No.11, pp. 1667-1674. https://doi.org/10.3795/KSME-A.2010.34.11.1667
  5. Kim, Y. J., Kim, H. G., Kim, C. Y., Chang, J. J. and Lee, M. Y., 2013, " Fatigue Analysis to Determine the Repair Limit for the Damaged Fastener Hole of Aging Aircraft(P-3CK)," proceeding of JKSAS, pp.959-966. https://doi.org/10.5139/JKSAS.2013.41.12.959
  6. Kang, K. W., Koh, S. K., Choi, D. S., Kim, T. S., 2010, "Fatigue Life and Stress Spectrum of Wing Structure of Aircraft," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 9, pp. 1185-1191. https://doi.org/10.3795/KSME-A.2010.34.9.1185
  7. SwRI Report, 1996, "F-5 FMS Durability and Damage Tolerance Update Revised Final DADTA Report - F-5E/F Republic of Korea Air Force," SWRI 06-4222.
  8. Daniel Ferreira V. Mattos, Alberto W.S. Mello Junior, Fabricio N.Ribeiro, Jan.-Jun. 2009, "F-5M DTA Program," Journal of Aerospace Technology and Management, Vol.1, No.1, pp. 113-120. https://doi.org/10.5028/jatm.2009.0101113120
  9. Lee, H. Y., Hwang, M. S. and Kim, J. W., 2002, "Analysis Fatigue Life & Damage Tolerance for Engine Mount," Proceeding of KSAS, pp. 408-411.