• 제목/요약/키워드: Fatigue Fracture Toughness

검색결과 99건 처리시간 0.025초

변동하중에서 미소하중의 제거가 균열진전에 미치는 영향 (The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading)

  • 심동석;이승호;김정규
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens

  • Aliha, M.R.M.;Heidari-Rarani, M.;Shokrieh, M.M.;Ayatollahi, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.823-833
    • /
    • 2012
  • An experimental method was suggested for obtaining fracture toughness ($K_{Ic}$) and the tensile strength (${\sigma}_t$) of chopped strand glass fiber reinforced polymer concretes (PC). Semi-circular bend (SCB) specimens subjected to three-point bending were used for conducting the experiments on the PC material. While the edge cracked SCB specimen could be used to evaluate fracture toughness, the tensile strength was obtained from the un-cracked SCB specimen. The experiments showed the practical applicability of both cracked and un-cracked SCB specimens for using as suitable techniques for measuring $K_{Ic}$ and ${\sigma}_t$ in polymer concretes. In comparison with the conventional rectangular bend beam specimen, the suggested SCB samples need significantly less material due to its smaller size. Furthermore, the average values of ${\sigma}_t$ and $K_{Ic}$ of tested PC were approximately 3.5 to 4.5 times the corresponding values obtained for conventional concrete showing the improved strength properties of PC relative to the conventional concretes.

철도교량(鐵道橋梁)의 용접부(鎔接部)에서 피로(疲勞)균열의 성장특성(成長特性) (Fatigue Creak Growth Properties of Welded Joint for the Railway Bridge Steel)

  • 장동일;용환선
    • 대한토목학회논문집
    • /
    • 제4권1호
    • /
    • pp.125-136
    • /
    • 1984
  • 용접구조에서 피로파괴는 피로균열의 성장거동에 주로 지배를 받는다. 특히 용접방향과 피로균열 성장방향의 이방성은 용접부 피로파괴의 중요한 영향인자가 된다. 피로이력을 갖고 있는 강재와 피로이력이 없는 강재를 용접시 저 ${\Delta}K$ 영역에서는 모재의 재질적인 영향인자보다 잔류응력의 영향이 크게 작용하였다. 그러나 균열이 용착금속에서 성장을 하는 경우는 용착금속의 인성이 가장 중요한 영향인자가 되는 것으로 밝혀졌다. 특히 용착금속의 인성불균일은 $da/dN-{\Delta}K$ 관계를 넓게 분포시킨다.

  • PDF

터어빈 로우터용 강에 대한 기계적 성질로부터 파괴인성치$K_IC$예측에 관한 연구 (Prediction of fracture toughness for turbine rotor steels from their mechanical test results)

  • 이학문;정순호;장윤석;이치우
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.717-724
    • /
    • 1987
  • 본 연구에서는 한국중공업에서 실제로 제작한 터어빈 로우터를 시험편으로 하 여 -150.deg. C에서 +150.deg. C에 걸쳐 인장시험, 충격시험 및 파괴인성시험을 실시하여 각 온 도에서 기계적 성질과 파괴인성치를 시험적으로 구하고 Begley-Logsdon의 방법에 따라 파괴인성치를 예측하여 예측방법의 유용성 여부를 조사하고 또한 파단면의 양상을 함 께 검토하였다.

SM20C 강의 피로파괴인성치의 확률분포 특성에 관한 연구 (A Study on Characteristic of Probabilistic Distribution of Fatigue Fracture Toughness in SM20C steel)

  • 오환교
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.3-9
    • /
    • 1997
  • The strength of material is scattered owing to the inhomogenity of microstructure, in spite of the same material. Therefore, in order to design the mechanical structure with the reliability engineering, it is important to grasp the statistic nature of material strength. In this paper, effects of grain sizes for the statistical nature of the fatigue crack growth was discussed. And the statistical of mechanical properties was compared with statistical nature of the fatigue crack growth rate.

  • PDF

오스템퍼 회주철의 파괴강도 특성에 관한 연구 (A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron)

  • 이하성;강동명;이영상
    • 한국안전학회지
    • /
    • 제11권1호
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

치과용 라미네이트 도재의 피로파괴에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE FATIGUE FRACTURE OF LAMINATE PORCELAIN)

  • 박찬운;배태성;이상돈
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.482-505
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture characteristics and the effect of resin bonding of laminate porcelain. In order to characterize the indentation-induced crack, Young's moduli and characteristic indentation dimensions were measured. The fatigue life under three point flexure test was measured using the electro-dynamic type fatigue machine, and the crack propagation with thermocycling was investigated on the condition of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ bath. The Vickers indentation pattern and the fracture surface were examined by an optical microscope and a scanning electron microscope (SEM). The results obtained were summarized as follows ; 1. Young's moduli(E) of the laminate porcelain and the resin cement used in this experiment were $62.56{\pm}3.79GPa$ and $15.01{\pm}0.12GPa$, respectively. 2. The initial crack size of the laminate porcelain was $69.19{\pm}5.94{\mu}m$ when an indentation load of 9.8N was applied, and the fracture toughness was $1.065{\pm}0.156MPa\;m^{1/2}$. 3. The fatigue life of laminate porcelain showed the constant fracture range at the stress level 27.46-35.30MPa. 4. When a cyclic flexure load was applied, the fatigue life of resin-bonded laminate porcelain was more decreased than that of laminate porcelain. 5. When a thermocycling was conducted, the crack growth rate of resin-bonded laminate porcelain was more increased than that of laminate porcelain. 6. Fracture surface showed the radial crack, the lateral crack, and the macroscopic crack branching region beneath the plastic deformation region when an indentation load of 9.8N was applied.

  • PDF

TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구 (Low cycle fatigue behaviour of TMCP steel in as-received and welded states)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.