• Title/Summary/Keyword: Fatigue Damage Count

Search Result 12, Processing Time 0.024 seconds

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Damage Mechanisms of a Piezoelectric Actuator under Electric Fatigue Loading (전기적 피로하중을 받는 압전 작동기의 손상 메커니즘)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.856-865
    • /
    • 2008
  • Damage mechanisms in bending piezoelectric actuators under electric fatigue loading are addressed in this work with the aid of an acoustic emission (AE) technique. Electric cyclic fatigue tests have been performed up to $10^7$ cycles on the fabricated bending piezoelectric actuators. An applied electric loading range is from -6 kV/cm to +6 kV/cm, which is below the coercive field strength of the PZT ceramic. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate and amplitude are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZ inner layer, thereby degrading the displacement performance. However, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to $10^7$ cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

Health Monitoring of a Composite Actuator with a PZT Ceramic during Electromechanical Fatigue Loading

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.541-549
    • /
    • 2007
  • This work describes an investigation into the feasibility of using an acoustic emission (AE) technique to evaluate the integrity of a composite actuator with a PZT ceramic under electromechanical cyclic loading. AE characteristics have been analyzed in terms of the behavior of the AE count rate and signal waveform in association with the performance degradation of the composite actuator during the cyclic tests. The results showed that the fatigue cracking of the composite actuator with a PZT ceramic occurred only in the PZT ceramic layer, and that the performance degradation caused by the fatigue damage varied immensely depending on the existence of a protecting composite bottom layer. We confirmed the correlations between the fatigue damage mechanisms and AE signal types for the actuators that exhibited multiple modes of fatigue damage; transgranular micro damage, intergranular fatigue cracking, and breakdown by a short circuiting were related to a burst type signal showing a shortly rising and slowly decaying waveform with a comparably low voltage, a continuous type signal showing a gradual rising and slowly decaying waveform with a very high voltage and a burst and continuous type signal with a high voltage, respectively. Results from the present work showed that the evolution of fatigue damage in the composite actuator with a PZT ceramic can be nondestructively identified via in situ AE monitoring and microscopic observations.

Electric Fatigue Behavior of a Bending Piezoelectric Composite Actuator (굽힘 압전 복합재료 작동기의 전기적 피로 거동)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.362-367
    • /
    • 2008
  • In the present work, we address electric fatigue behavior in bending piezoelectric actuators using an acoustic emission technique. Electric cyclic fatigue tests have been performed up to ten million cycles on the fabricated specimens. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZT inner layer, thereby degrading the displacement performance. The electric-induced fatigue behavior seems to show not a continuous process but a step-by-step process because of the brittleness of PZT ceramic. Nevertheless, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to 107 cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

  • PDF

Smart sensors for monitoring crack growth under fatigue loading conditions

  • Giurgiutiu, Victor;Xu, Buli;Chao, Yuh;Liu, Shu;Gaddam, Rishi
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.101-113
    • /
    • 2006
  • Structural health monitoring results obtained with the electro-mechanical (E/M) impedance techniqueand Lamb wave transmission methods during fatigue crack propagation of an Arcan specimen instrumented with piezoelectric wafer active sensors (PWAS) are presented. The specimen was subjected in mixed-mode fatigue loading and a crack was propagated in stages. At each stage, an image of the crack and the location of the crack tip were recorded and the PWAS readings were taken. Hence, the crack-growth in the specimen could be correlated with the PWAS readings. The E/M impedance signature was recorded in the 100 - 500 kHz frequency range. The Lamb-wave transmission method used the pitch-catch approach with a 3-count sine tone burst of 474 kHz transmitted and received between various PWAS pairs. Fatigue loading was applied to initiate and propagate the crack damage of controlled magnitude. As damage progressed, the E/M impedance signatures and the waveforms received by receivers were recorded at predetermined intervals and compared. Data analysis indicated that both the E/M impedance signatures and the Lamb-wave transmission signatures are modified by the crack progression. Damage index values were observed to increase as the crack damage increases. These experiments demonstrated that the use of PWAS in conjunction with the E/M impedance and the Lamb-wave transmission is a potentially powerful tool for crack damage detection and monitoring in structural elements.

Characteristics of Fatigue Load in a Wind Turbine by the Wake (후류에 의한 풍력터빈의 피로하중 특성)

  • Kim, Chung-Ok;Eum, Hark-Jin;Nam, Hyun-Woo;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • The wake generated by a wind turbine has an effect on performance of a downstream wind turbine as well as mechanical loads. This paper investigated characteristics of fatigue load at the blade root due to the wake effects and quantitatively analyzed its effects at operating condition of a 5MW tripod offshore wind turbine using Bladed 4.1 software. The wake effects was studied the way the wake's center position move from the rotor center to the blade tip to the far-away position where the wake doesn't affect the wind turbine. When wake's center was located on the blade tip or the rotor center, damage equivalent fatigue load was higher than other positions. It was up to 10~14% compared to those of non-wake case. Results of this study would be helpful to design wind turbines and wind farms to have lifetimes more than 20 years of the wind turbine.

An Analysis on Fatigue Fracture of Nuclear Pump Impeller Alloys by Ultrasonic Vibratory Cavitation Erosion (원전 해수 펌프 임펠러 합금의 케비테이션 피로 손상 해석)

  • Hong Sung-Mo;Lee Min-Ku;Kim Gwang-Ho;Rhee Chang-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.35-42
    • /
    • 2006
  • In this study, the fatigue properties on the cavitation damage of the flame quenched 8.8Al-bronze (8.8Al-4.5Ni-4.5Fe-Cu) as well as the current nuclear pump impeller materials (8.8Al-bronze, STS316 and SR50A) has been investigated using an ultrasonic vibratory cavitation test. For this the impact loads of cavitation bubbles generated by ultrasonic vibratory device quantitatively evaluated and simultaneously the cavitation erosion experiments have been carried out. The fatigue analysis on the cavitation damage of the materials has been made from the determined impact load distribution (e.g. impact load, bubble count) and erosion parameters (e.g. incubation period, MDPR). According to Miner's law, the determined exponents b of the F-N relation ($F^b$ N = Constant) at the incubation stage (N: the number of fracture cycle) were 5.62, 4.16, 6.25 and 8.1 for the 8.8Al-bronze, flame quenched one, STS316 and SR50A alloys. respectively. At the steady state period, the exponents b of the F-N' curve (N': the number of cycle required for $1{\mu}m$ increment of MDP) were determined as 6.32, 5, 7.14 and 7.76 for the 8.8Al-bronze, flame quenched one, STS316, and SR50A alloys, respectively.

Failure Prediction of Metal Oxide Varistor Using Nonlinear Surge Look-up Table Based on Experimental Data

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.317-322
    • /
    • 2015
  • The metal oxide varistor (MOV) is a major component of the surge protection devices (SPDs) currently in use. The device is judged to be faulty when fatigue caused by the continuous inflow of lightning accumulates and reaches the damage limit. In many cases, induced lightning resulting from lightning strikes flows in to the device several times per second in succession. Therefore, the frequency or the rate at which the SPD is actually exposed to stress, called a surge, is outside the range of human perception. For this reason, the protective device should be replaced if it actually approaches the end of its life even though it is not faulty at present, currently no basis exists for making the judgment of remaining lifetime. Up to now, the life of an MOV has been predicted solely based on the number of inflow surges, irrespective of the magnitude of the surge current or the amount of energy that has flowed through the device. In this study, nonlinear data that shows the damage to an MOV depending on the count of surge and the amount of input current were collected through a high-voltage test. Then, a failure prediction algorithm was proposed by preparing a look-up table using the results of the test. The proposed method was experimentally verified using an impulse surge generator

Bending Fatigue Life Assessment of Aged CWR using the Field Test (현장측정을 통한 노후레일의 휨 피로수명 평가)

  • Park, Yong-Gul;Sung, Deok-Yong;Park, Hong-Kee;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.317-325
    • /
    • 2008
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). This study evaluated correlation between conditions of track and load capacity of rail by analysing the dynamic response of track while the metro train is running. Also, it was converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then accumulated fatigue damage ratio and remaining service life of laid rail were calculated so as the apply the equivalence of stress to S-N curve of a new welded rail. Finally, this study suggests a revision of the periodic replacements criterion of CWR, which was based on accumulated passing tonnage, classified by the types and conditions of track system.

Gelatinized and Fermented Powders of Lepidium meyenii (Maca) Improve Physical Stamina and Epididymal Sperm Counts in Male Mice

  • Shin, Sun-Hee;Park, Dong-Sun;Jeon, Jeong-Hee;Joo, Seong-Soo;Kim, Yun-Bae;Kang, Hyun-Gu
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.283-289
    • /
    • 2008
  • Lepidium meyenii, known as Maca, is traditionally employed in the Andean region for its supposed properties to improve energy and fertility. In the present study, we investigated the effects of gelatinized and fermented Maca on improvement of physical stamina and epididymal sperm counts, and on blood biochemical parameters related to fatigue and tissue injury: creatine phosphokinase, aspartate transaminase, lactate dehydrogenase, blood urea nitrogen, glucose, total cholesterol and total proteins. Adult male mice was divided at random into two main groups (resting and excercise groups). The excercise group was separated into three subgroups (exercise only, exercise with gelatinized Maca and fermented Maca-treatment groups). Gelatinized or fermented Maca (800 mg/kg) were orally administered for 30 days. All animals in exercise groups were subjected to daily 30-min swimming for 28 days 30 min after Maca treatment. Daily exercise decreased the body weight gain, and fermented Maca further attenuated the body weight increase. Gelatinized and fermented Maca significantly increased the maximum swimming time on 14 and 28 days of treatment (p<0.05), respectively, suggestive of a long-term stamina-enhancing effect of fermented Maca. Both Maca fully or significantly recovered blood parameters of energy as well as muscular and hepatocytic injuries changed by repeated exercise and maximum swimming performance (p<0.01). Moreover, gelatinized and fermented Maca increased epididymal sperm counts 22.0% and 32.0%, respectively. In conclusion, the results indicate potential benefits of Maca for improving both physical stamina by minimizing muscular and hepatic damage and preserving energy during swimming exercise and male reproductive function by increasing epididymal sperm counts.