• Title/Summary/Keyword: Fatigue Crack Behavior

Search Result 762, Processing Time 0.029 seconds

Constructional Verification Evaluation for Securing the Field Quality of Composite Membrane Waterproofing Material (멤브레인 복합 방수재의 현장품질 안정성 확보를 위한 시공성 실증 평가 연구)

  • Kim, Meong-Ji;Lee, Sang-Wook;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, seven companies(A~G) designated as new construction technology selected and evaluated KS F 2622: Method of test for performance evaluation of membrane roofing systems that are similar to field application conditions. As a result of the test, it was confirmed that although all test specimens exceeded KS standards in the basic physical, it was difficult to obtain field quality performance in weak areas such as joints and vertical parts of the adhesive coating method in water-tightness, sagging resistance, swelling resistance tests except for fatigue(crack behavior) tests.

A Study on Local Distribution of Fracture Toughness for Welded Joints of Steel Structure (구조강(構造鋼) 용접부(鎔接部)의 국부인성분포(局部靭性分布)에 관한 연구(研究))

  • Chang, Dong Il;Young, Hwan Sun;Kim, Dong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.19-25
    • /
    • 1984
  • In the welded structure, the most dengerous section is welded parts and almost fractures of welded structure occur from welded parts. Accordingly, in other to prevents of fracture, it is important seeking the fracture behavior of welded parts. In this study as basic investigation of fracture behavior of welded parts, it is investigated that local distribution of fracture toughness and effect of multipass electrode welding, also effect of release of residual stress were investigated, as the subjected. material, the used steel having fatigue history and unused steel were selected. As the result of this study, it is dear that the base metal of unused steel and heat affected zone and weld metal are different each other in fracture toughness, and it seems clear that the weld metal may will become source of fracture because of it having the most low fracture toughness. Especially, in the case of crack occur in the used steel, it will be the most brittle section in the structure because of it having low fracture toughness then weld metal. It affirmation that, if welded parts has not flaw, the multi pass electrode welding effective to improve of fracture toughness, also release of residual stress is none effective to improve of fracture toughness in this study.

  • PDF

Behavior Analysis of Ultra-Thin Whitetopping in Field (얇은 콘크리트 덧씌우기 포장의 거동 평가)

  • Kang, Jang-Hwan;Jang, Jin-Yen;Koo, Han-Mo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.25-36
    • /
    • 2004
  • The total length of paved roads in Korea is 67,265 Km, and among these roads, about 40% of the national highways and 98% of local roads are paved with asphalt concrete. The major distress to asphalt pavement is rutting and fatigue crack. The permanent deformation including rutting accounts for about 75% of this distress. UTW(Ultra-Thin Whitetopping), which is known for its high-quality performance in asphalt pavement with rutting and cracking, seems to reduce maintenance costs significantly if it is used as the maintenance/repair method for domestic asphalt pavement. In the research, static load test was conducted to establish a behavior of Whitetopping under traffic and environmental condition. It showed that the effect of the thickness of the concrete layer and the temperature change was significant. In addition, the tensile strain as the wheel load position was close to interior and edge of concrete slab were increased up to 75% of maximum tensile strain. It showed that joint spacing must be considered in UTW design procedure.

  • PDF

Improvement of Flight Safety by Horizontal Stabilizer Design Improvement of Rotorcraft (회전익 항공기 수평 안정판의 설계 개선을 통한 비행 안전성 향상)

  • Lee, Yoon-Woo;Kim, Dae-Han;Jang, Min-Wook;Hyun, Young-Jin;Lee, Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.134-141
    • /
    • 2019
  • This paper is a study on design improvement of rotorcraft horizontal stabilizer. The rotorcraft horizontal stabilizer stabilizes the behavior of the pitch, yaw, etc. from the aircraft. Because of this role, horizontal stabilizers are a major component (Flight Safety Part) that affects flight safety on rotorcraft. However, when the rotorcraft was operated in domestic, cracks were found in the inner structure of the horizontal stabilizer and design improvement was needed. In this paper, we identified the two causes of the horizontal stabilizer crack defects through fracture analysis and structural analysis. The first is the tightening torque when the bolt is tightened, and the second is the lead-lag behavior of aircraft. In order to improve these two causes, bolt fastening method, flange structure and thickness were changed and composite ring was applied. In order to verify the design improvement, the structural analysis was performed and the structural strength was improved. Also Fatigue analysis of the internal structure (Rib 1) was performed and it was confirmed that the requirements were satisfied.

Behavior of FRP-Concrete Composite Decks with the Mechanical Connection (기계적 합성이 적용된 FRP-콘크리트 합성 바닥판의 거동 분석)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Cho, Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.609-616
    • /
    • 2010
  • FRP-concrete composite deck, an innovative system, is composed of concrete in the top and FRP panel in the bottom. Bottom FRP panel can reduce self weight and improve workability. This system requires strong connection between FRP and concrete. Therefore coarse sand coating was previously applied on FRP to improve the bonding. In this study, concrete wedge method is newly introduced to enhance both vertical bond and fatigue performance. Three FRP-concrete composite deck specimens with the concrete wedges were manufactured, and static and fatigue tests were carried out. The results showed that the new FRP-concrete composite deck satisfied deflection and crack width limits set by the design codes. And the fatigue test showed that the composite deck was capable of two million load cycles under 50% of its static strength. Based on the results, it can be concluded that that this new system has outstanding mechanical and durability performance, and therefore, satisfactorily be used in designing FRP-concrete composite deck.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels (고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구)

  • Park, B.C.;Bae, K.U.;Gu, S.M.;Jang, S.H.;Hong, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

A Study on Technology of Waterproofing of the Concrete Structure Which Used Soft FRP Resin and Square Groove Cutting Technique (연질 FRP 수지와 정방형 홈 컷팅 기술을 이용한 콘크리트 구조물의 방수기술에 관한 연구)

  • Lee, Hyung-Jun;Choi, Sung-Min;Kim, Sung-Sik;Ahn, Sang-Ku;Cho, Ah-Hyung;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.597-600
    • /
    • 2008
  • In this study the reason which researches the feature of the exposure type waterproofing it uses the technique of the soft FRP it uses the soft unsaturated polyester and the square groove cutting technique with respects and solves the interface separate problem because of the rigid FRP it is used with the repairs and retrofit materials it is caused by in adhesion of concrete insufficiency. The feature of this technique was the dispersion and the reinforcement of the fatigue stress due to the integration behavior and the reinforcement due to the glass-fibre of the concrete due to the soft FRP resin and, it investigated the crack appearance confrontation of concrete and the cohesion stability of the concrete due to the square groove cutting technique with importance. The result of research when it applies the soft FRP with the exposure type waterproofing, is judged with the fact that it will be able to expect a bulge resistance confrontation and creak confrontation ability and cohesion stability improvement.

  • PDF

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.