• Title/Summary/Keyword: Fate

검색결과 847건 처리시간 0.036초

Effects of Herbicide on the Environmental Ecosystem in Subtropics

  • Wang, Yei-Shung
    • 한국잡초학회지
    • /
    • 제18권2호
    • /
    • pp.85-94
    • /
    • 1998
  • Herbicides play a very important role in modern agriculture. However, the herbicide applied to the agricultural field may accumulate in the field, converting the advantages to environment pollution. Many small animals in the ecosystem such as alderfly, earthworm, butterfly, loach, frog, firefly, some birds and aquatic organisms have been known to disappear gradually. In addition, several behavior of herbicides including adsorption by soil, movement by water, photodecomposition, volatilization to air, absorption by plant, metabolism by soil microorganisms and so on, are proceeded while the herbicide remained in the environment. In this review, fate and behavior of herbicides in the environment and their effect on ecosystem after their application are focused on four aspects : the first is the absorption and metabolism of herbicides by plant; the second is the residues of herbicides in soil and water environments: the third is the accumulation and release of herbicides in aquatic organisms and the fourth is the translocation of herbicides in model agricultural ecosystem. Many factors may affect the behavior and fate of herbicides after their application, climatic conditions and soil properties seem to be the most important. Therefore, the fate and behavior of herbicide in Taiwan, located on subtropical region, may differ from those in Korea.

  • PDF

사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 III: 유기화학물질을 중심으로 (Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment III: organics)

  • 정슬기;문희선;신도연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2019
  • This study presents a technical perspective to the fate characteristics of phenol and m-cresol, which represent some of the most common organic chemicals found in chemical spill accidents, and likely to persist in soil and groundwater due to their highly stable physicochemical properties. Some cases of domestic and foreign chemical accidents linked to phenol and m-cresol contamination were compiled. Due to their low organic carbon-water partitioning coefficient (Koc), phenol and m-cresol tend to migrate into groundwater and remained as dissolved phase. On the other hands, phenol and m-cresol can be readily decomposed by microbes in soil and groundwater under appropriate conditions. Therefore, the fate characteristics of these chemicals are highly contingent on environmental conditions. Thus, if a great quantity of leakage is occurred by chemical accidents, the up-to-date and correct information about fate characteristics taking into account both the chemical and environmental conditions is greatly needed to minimized the potential hazards from these chemicals.

Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth

  • Go, Ga-Yeon;Lee, Sang-Jin;Jo, Ayoung;Lee, Jaecheol;Seo, Dong-Wan;Kang, Jong-Sun;Kim, Si-Kwan;Kim, Su-Nam;Kim, Yong Kee;Bae, Gyu-Un
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.608-614
    • /
    • 2017
  • Background: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. Methods: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. Results: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. Conclusion: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon;Chen, Ching-Lung;Johnston, Murray V.;Wang, Gen Suh;Huang, Chin-Pao
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.29-37
    • /
    • 2022
  • To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

The role of microRNAs in cell fate determination of mesenchymal stem cells : balancing adipogenesis and osteogenesis

  • Kang, Hara;Hata, Akiko
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.319-323
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are multipotent stem cells capable of differentiating into adipocytes, osteoblasts, or chondrocytes. A mutually inhibitory relationship exists between osteogenic and adipogenic lineage commitment and differentiation. Such cell fate decision is regulated by several signaling pathways, including Wnt and bone morphogenetic protein (BMP). Accumulating evidence indicates that microRNAs (miRNAs) act as switches for MSCs to differentiate into either osteogenic or adipogenic lineage. Different miRNAs have been reported to regulate a master transcription factor for osteogenesis, such as Runx2, as well as molecules in the Wnt or BMP signaling pathway, and control the balance between osteoblast and adipocyte differentiation. Here, we discuss recent advancement of the cell fate decision of MSCs by miRNAs and their targets. [BMB Reports 2015; 48(6): 319-323]

Phytoremediation and Bioremediation of Land Contaminated by Hydrocarbons: Modeling and Field Applications

  • Sung, Kijune;Corapcioglu, M.Yavuz
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.18-21
    • /
    • 2002
  • Phytoremediation which uses plants to enhance the bioremediation through stimulation of microbial activity and root uptake, has been a topic of increasing interest. Mathematical model were developed that can be applied to various bioremediation methods in the unsaturated zone, especially phytoremediation, for simulating the fate and transport of contaminants under field conditions. A 2-year field study was conducted using 72 (1.5m long and 0.1 m diameter) column lysimeters with four treatments: Johnsongrass; wild rye grass; a rotation of Johnsongrass and wild rye grass; and unplanted fallow conditions. The developed model represented the fate and transport of contaminant both in vegetated and unplanted soils satisfactorily for field applications. Parameters related to the contaminant concentration in the water phase were the main parameters determining the contaminant fate in the vadose zone and indicated that the bioavailability can be the most important factor in the success of phytoremediation as well as bioremediation applications.

  • PDF

Simulation of Pesticide Fate and Transport in Drainage Channels

  • Chung, Sang-Ok;Park, Ki-Jung;Christen, E.W.
    • 한국농공학회논문집
    • /
    • 제47권7호
    • /
    • pp.49-56
    • /
    • 2005
  • Contamination in the drainage channels and creeks with pesticides used in agriculture is of a major concern in many countries. In this study the stream pesticide model RIVWQ (chemical transport model for riverine environments) was assessed for its applicability in simulating pesticide fate in drainage channels. The model was successfully calibrated against field data collected on flows and pesticide concentrations for a drainage channel from a small catchment in the Murrumbidgee Irrigation Area of southwestern New South Wales. The effects of different pesticide loading scenarios from farm fields on channel water quality were analysed by the calibrated model. The model simulated the flow rates and the pesticide concentrations in the drainage channel well. The results of the model simulation suggest that the RIVWQ model can be effectively used for predicting pesticide fate in the drainage channels and exposure assessment of pesticide in the agricultural environment.

Modeling of Sequential Dissipation of TNT in Phytoremediation

  • 성기준;장윤영;이인숙;배범한
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.314-317
    • /
    • 2003
  • Plants may enhance the remediation of munitions at contaminated soils using various natural processes. A computer model can be used as a valuable tool for assisting phytoremediation by predicting the transport and fate of target contaminants at remediation sites. For this research, modeling of phytoremediation and bioremediation of soil contaminated with 2, 4, 6-trinitrotoluene (TNT) was studied. Indian mallow (Abutilion avicennae) was grown in columns packed with 126mg TNT/kg contaminated soils for 50 days and a simulation model was developed to simulate the transport and fate of TNT and its breakdown products interacting with plant roots in a partially saturated soil. The column test showed the substantially enhanced reduction of TNT and greater soil microbial activity in Indian mallow planted soil compared to unplanted soil. The model successfully simulated the fate of TNT and by-products in phytoremediation. The results suggested that plants could provide favorable environments for reduction of TNT.

  • PDF

심해저 자원 개발과정에서 재부유 퇴적물 입자의 동태 예측에 관한 연구 (Prediction of Fate of Resuspended Sediment in the Development of Deep-sea Mineral Resources)

  • 이두곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.45-50
    • /
    • 2002
  • This study presents a modeling method to predict fate of resuspended sediment in the development of deep-sea mineral resources. Resuspended deep-sea sediment during the development is considered a major environmental problem. In order to quantitatively analyze the resuspended sediment in the water column, particle size distribution (PSD) is considered an important factor. The model developed here includes PSD and coagulation process, as well as sedimentation process. Using the model, basic simulation was performed under representative environmental setting. The simulation showed the dynamics of change of particle size distribution for 50 m depth of water column up to 10 days of simulation time. Coagulation seemed an important factor in the fate of resuspended deep-sea sediment.

  • PDF

제2형 당뇨질환모델 db/db 마우스에서 부추 추출물 및 유산균 발효물의 항당뇨 효과 (Anti-diabetic effects of Allium tuberosum rottler extracts and lactic acid bacteria fermented extracts in type 2 diabetic mice model)

  • 김배진;조성경;정유석;정희경
    • 한국식품저장유통학회지
    • /
    • 제22권1호
    • /
    • pp.134-144
    • /
    • 2015
  • 본 연구에서는 비 상품 부추의 산업적 활용의 활성화를 위해 제 2형 당뇨모델인 db/db 마우스에서 부추 추출물과 부추 발효물에 대한 항당뇨 효과를 조사하였다. 부추 발효물 제조를 위한 균주선발을 위해 L. acidophilus, L. plantarum, L. casei을 접종하여 배양시킨 부추 추출물(부추 발효물)에 대한 전자공여능을 측정한 결과, L. acidophilus, L. plantarum 부추 발효물은 활성이 증가되었으나 L. plantarum 접종한 부추 발효물의 superoxide radical 소거능은 부추 추출물의 0.6배 수준으로 감소하였다. L. plantarum와 L. casei 균주를 접종한 부추 발효물의 superoxide radical 소거능은 부추 추출물과 유사한 수준을 나타내었다. 따라서 L. plantarum과 L. casei를 이용하여 발효한 부추 발효물과 부추 추출물을 제2형 당뇨질환 동물모델인 db/db mice에 두 가지 농도구간으로(저농도 : 200 mg/kg, 고농도 : 400 mg/kg) 경구 투여한 후, 항당뇨 효능을 평가하였다. 체중 및 식이섭취량을 측정한 결과, 저농도 부추 발효물을 투여하였을 때, 식이섭취량의 변화 없이 체중증가량이 유의적으로 감소되는 것을 확인할 수 있었다(p<0.05). 혈당증가량과 혈청 내 insulin 함량은 고농도 부추 추출물을 투여하였을 때, 유의적으로 감소되었고, 부추 발효물을 투여한 군에서도 감소되는 경향을 나타내었다(p<0.05). 경구 당 부하검사 결과에서도 고농도의 부추 추출물 및 부추 발효물을 투여한 군에서 포도당 내성 효과가 개선되는 것으로 나타났다. 당뇨병에 의해 감소된 혈청 내 GLP-1 농도는 고농도 부추 추출물 및 고농도의 부추 발효물 투여로 인해 증가되었으며 이상의 결과들은 부추 추출물 및 부추 발효물이 GLP-1 분비를 증가시켜 insulin 저항성을 개선시킬 수 있음을 나타낸다. 비록 본 연구결과에서 제2형 당뇨질환에 대한 항당뇨 효능은 부추 추출물이 부추 발효물 보다 더 효과적인 것으로 나타났으나, 두가지 유산균으로 혼합발효한 부추 발효물은 부추 추출물과 유사한 수준의 항당뇨 효능을 보임과 동시에 제2형 당뇨병으로 인한 체중증가도 감소시킬 수 있어 비만을 동반하는 제2형 당뇨병의 예방과 개선을 위한 기능성 소재로 활용될 수 있을 것이라 사료된다.