• Title/Summary/Keyword: Fast measurement

Search Result 928, Processing Time 0.029 seconds

Measurement Data Comparison of Fast SAR Measurement System by Probe Arrays with Robot Scanning SAR Measurement System

  • Kim, Jun Hee;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2014
  • Dosimetry of radiating electromagnetic wave from mobile devices to human body has been evaluated by measuring Specific Absorption Rate (SAR). Usual SAR measurement system scans the volume by robot arm to evaluate RF power absorption to human body from wireless devices. It is possible to fast estimate the volume SAR by software deleting robot moving time with the 2D surface SAR data acquired by arrayed probes. This paper shows the principle of fast SAR measurement and the measured data comparison between the fast SAR system and the robot scanning system. Data of the fast SAR is well corresponding with data of robot scanning SAR within ${\pm}3$ dB, and its dynamic range covers from 10 mW/kg to 30 W/kg with 4.8 mm probe diameter.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

A 235U mass measurement method for UO2 rod assembly based on the n/γ joint measurement system

  • Yang, Jianqing;Zhang, Quanhu;Su, Xianghua;Li, Sufen;Zhuang, Lin;Hou, Suxia;Huo, Yonggang;Zhou, Hao;Liu, Guorong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1036-1042
    • /
    • 2020
  • Fast-Neutron Multiplicity Counter based on Liquid Scintillator Detector can directly measure the fast neutron multiplicity emitted by UO2 rod. HPGe gamma spectrometer; which has superior energy resolution; is routinely used for the gamma energy spectrum measurement. Combing Fast-Neutron Multiplicity Counter and HPGe γ-spectrometer, the n/γ joint measurement system is developed. The fast neutron multiplicity and gamma energy spectrum of UO2 rod assemblies under different conditions are measured by the n/γ joint measurement system. The induced fission rate and the 235U abundance, thereby the 235U mass; can be obtained for UO2 rod assemblies. The 235U mass deviation of the measured value from the reference value is less than 5%. The results show that the n/γ joint measurement system is effective and applicable in the measurement of the 235U mass in samples.

Measurement of Unsteady Total Pressure downstream of an 1-Stage Axial Turbine (1단 축류터빈 로터의 후류에서 비정상 전압력 측정에 관한 연구)

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.318-323
    • /
    • 2005
  • To evaluate the accurate performance of turbomachinery, it is important to measure the unsteady flow phenomena downstream of the rotor blade. This paper presents the development of the fast-response total pressure probe for the measurement of the total pressure field at the exit of rotor and the result of measurement in a 1-stage axial turbine. The fast-response total pressure probe was fabricated by installing a fast-response pressure sensor near the head of a Kiel probe. And it measured the phase-lock averaged total pressure downstream of an 1-stage axial turbine. The developed probe successfully measured the accurate total pressure distribution at rotor exit and made possible to evaluate the loss distribution and the accurate performance of turbomachinery.

  • PDF

A fast high-resolution vibration measurement method based on vision technology for structures

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Chae, Gyung-Sun;Park, Jae-Seok;Kim, Se-Oh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.294-303
    • /
    • 2021
  • Various types of sensors are used at industrial sites to measure vibration. With the increase in the diversity of vibration measurement methods, vibration monitoring methods using camera equipment have recently been introduced. However, owing to the physical limitations of the hardware, the measurement resolution is lower than that of conventional sensors, and real-time processing is difficult because of extensive image processing. As a result, most such methods in practice only monitor status trends. To address these disadvantages, a high-resolution vibration measurement method using image analysis of the edge region of the structure has been reported. While this method exhibits higher resolution than the existing vibration measurement technique using a camera, it requires significant amount of computation. In this study, a method is proposed for rapidly processing considerable amount of image data acquired from vision equipment, and measuring the vibration of structures with high resolution. The method is then verified through experiments. It was shown that the proposed method can fast measure vibrations of structures remotely.

Water-Simulant Facility Installation for the Sodium-Cooled Fast Reactor KALIMER-600 and Global Flow Measurement (소듐냉각고속로 KALIMER-600 축소 물모의 열유동 가시화 실험장치 구축 및 거시 유동장 특성 측정)

  • Cha, Jae-Eun;Kim, Seong-O
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.54-62
    • /
    • 2011
  • KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.

The Study for the Method of Fast and Efficient Gamma-ray Detection for the Stereo Gamma-ray Ddetection System (스테레오 감마선 탐지장치의 고속 방사선 탐지기법에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1253-1258
    • /
    • 2014
  • In this paper, we propose the fast and efficient detection method using the continuous measurement technique for the gamma-ray signal acquisition. This method is improved than the conventional method for the getting information of the radiation distribution. First, we implement the stereo radiation detection system using gamma-ray sensors and the motion controller. We apply continuous measurement technique to the gamma-ray detector and conduct gamma-ray irradiation test for the comparison of detection techniques. The results show that the continuous measurement technique has the high efficient performance than the conventional method.

Development of Fast-Response Portable NDIR Analyzer Using Semiconductor Devices

  • Kim, Woo-Seok;Lee, Jong-Hwa;Park, Young-Moo;Yoo, Jai-Suk;Park, Kyoung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2099-2106
    • /
    • 2003
  • In this paper, a novel fast response NDIR analyzer (FRNDIR), which uses an electrically pulsed semiconductor emitter and dual type PbSe detector for the PPM-level detection of carbon dioxide (CO$_2$) at a wavelength of 4.28 $\mu\textrm{m}$, is described. Modulation of conventional NDIR energy typically occurs at 1 to 20 Hz. To achieve real time high-speed measurement, the new analyzer employs a semiconductor light emitter that can be modulated by electrical chopping. Updated measurements are obtained every one millisecond. The detector has two independent lead selenide (PbSe) with IR band pass filters. Both the emitter accuracy and the detector sensitivity are increased by thermoelectric cooling of up to -20 degrees C in all semiconductor devices. Here we report the use of semiconductor devices to achieve improved performance such that these devices have potential application to CO$_2$ gas measurement and, in particular, the measurement of fast response CO$_2$ concentration at millisecond level.