• Title/Summary/Keyword: Fast current control

Search Result 426, Processing Time 0.028 seconds

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Power factor correction of the three phase boost converter using DSP control (DSP 제어에 의한 3상 Boost 컨버터의 역률개선)

  • Baek, Jong-Hyeon;Hong, Seong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.958-961
    • /
    • 1998
  • In this paper, a three phase boost converter that operates with unity power factor and sinusodial input currents is presented. The current control of the converter is based on the space vector strategy with fixed switching frequency and the input current tracks the reference current within one sampling time interval. Space vector strategy for current control was materialized as a digital control method by using DSP. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

A Design of a High Performance UPS with Capacitor Current Feedback for Nonlinear Loads (비선형 부하에서 커패시터 전류 궤환을 통한 고성능 UPS 설계)

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 2012
  • This paper presents a digital control solution to process capacitor current feedback of high performance single-phase UPS for non-linear loads. In all UPS the goal is to maintain the desired output voltage waveform and RMS value over all unknown load conditions and transient response. The proposed UPS uses instantaneous load voltage and filter capacitor current feedback, which is based on the double regulation loop such as the outer voltage control loop and inner current control loop. The proposed DSP-based digital-controlled PWM inverter system has fast dynamic response and low total harmonic distortion (THD) for nonlinear load. The control system was implemented on a 32bit Floating-point DSP controller TMS320C32 and tested on a 5[KVA] IGBT based inverter switching at 11[Khz]. The validity of the proposed scheme is investigated through simulation and experimental results.

Minimum Time Current Control in 3-Phase Balanced Systems (3상 대칭 시스템의 최단시간 전류제어)

  • Choe, Jong-U;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.313-320
    • /
    • 2002
  • In this paper, a new current controller with fast transient response is Proposed. The basic concept is to find the optimal control voltage for tracking the reference current with minimum time under the voltage limit constraint. The generalized solution of the minimum time current control in the systems are presented in this paper. With the generalized solution, the minimum time current controller can be easily applied to all the 3-phase balanced system. Through the simulation and the experiment, it is observed that the proposed controller has much less transient time than the conventional synchronous PI regulator.

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

Implementation of Position Control of PMSM with FPGA

  • Reaugepattanawiwat, Chalermpol;Eawsakul, Nitipat;Watjanatepin, Napat;Pinprathomrat, Prasert;Desyoo, Phayung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1254-1258
    • /
    • 2004
  • This paper presents of position control of Permanent Magnet Synchronous Motor (PMSM) the implementation with Field Programmable Gate Array (FPGA) is proposed. Cascade control with inner loop as a current control and an outer loop as a position control is chosen for simplicity and fast response. FPGA is a single chip (single processing unit), which will perform the following tasks: receive and convert control signal, create a reference current signal, control current and create switch signal and act as position controller in a addition of zero form. The 10 kHz sampling frequency and 25 bit of floating point data are defined in this implementation.The experimental results show that the performance of FPGA based position control is comparable with the hardware based position control, with the advantage of control algorithm flexibility

  • PDF

Control Characteristics of Current Controlled PWM Using Vector Control in VSI-IM Drive System (VSI-IM 구동 시스템에 벡터제어를 이용한 전류제어 PWM 방식의 제어특성)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.38-50
    • /
    • 1991
  • A current-controlled scheme of pulse width modulation voltage source inverter (PWM VSI) has attracted considerable attention due to its fast response with current limit and especially suitable for potentially high performance applications such as AC motor drives and UPS systems. These features yield near-sinusoidal currents in the load with reduced current peaks, lower inverter switching frequency and reduce inverter and load stresses. A high performance current-controlled inverter must have a quick response in transient state and low harmonic current in steady state. This paper compares and shows the controlled-characteristics with hysteresis controller(HC), ramp comparison controller(RCC) and predictive controller(PC) of PWM inverter to control actual current of VSI-IM.

  • PDF

Implementation of a Fast Current Controller using FPGA (FPGA를 이용한 고속 전류 제어기의 구현)

  • Jung, Eun-Soo;Lee, Hak-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • This paper presents a design of an FPGA (Field Programmable Gate Array) -based currentcontroller. Using the nature of the high computational capability of FPGA, the digital delay due to the algorithm execution can be reduced. The control performance can be better than the conventional DSP (Digital Signal Processor)-based current controller. Moreover, this method does not need any delay compensation algorithm because the digital delay is physically diminished. Therefore, the bandwidth of the current controller can be extended by this method. The feasibility of this method is verified by several experimental results under the various conditions.

Predictive Current Control of Distribution Static Condenser (D-STATCON) for Reactive Power Compensation in Flexible AC Transmission System(FACTS) (유연송전시스템에서의 역률 보상을 위한 배전용 정지형 동기조상기의 전류제어)

  • 오관일;문건우;전영수;이기선;추진부
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.447-454
    • /
    • 1998
  • This paper describes a modeling and current control techniques of Distribution static condenser (D-STATCON) for power factor compensation. The current control is based on the predictive and the space vector PWM scheme. The predictive current controlled PWM D-STATCON can maintain its performance with power factor compensation and fixed switching frequency. By using the space vector control low ripple and offset in the current and the voltage as well as fast dynamic responses are achieved with a small DC link capacitance employed.

  • PDF

Digital Control of an AC/DC Converter using the Power Balance Control Technique with Average Output Voltage Measurement

  • Wisutmetheekorn, Pisit;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2012
  • This paper presents a method for the digital control of a high power factor AC/DC converter employing the power balance control technique to achieve a fast response of the output voltage control. To avoid the effects of an output voltage ripple in the voltage control loop, the average output voltage is sampled and used as a feedback signal for the output voltage controller. The proposed control technique was verified by simulations using MATLAB/Simulink and its implementation was realized by a dsPIC30F4011 digital signal processor to control a CUK topology AC/DC converter with a 48V output voltage and a 250 W output power. The experimental results agree with the simulation results. The proposed control technique achieves a fast transient response with a lower line current distortion than is achieved when using a conventional proportional-integral controller and the power balance control technique with the conventional sampling method.