• Title/Summary/Keyword: Fast Pyrolysis

Search Result 80, Processing Time 0.032 seconds

Energy Recovery via Pyrolysis of Waste Tire Rubber : Desulfurization Effect of Pyrolysis Oil by Adding Waste Polypropylene (폐타이어의 열분해를 통한 에너지화 : 폐폴리프로필렌 첨가 시 열분해 오일의 탈황 효과)

  • Jeong, Jaeyong;Lee, Uendo;Chang, Wonseok;Oh, Munsei;Jeong, Soohwa
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, waste tire rubbers were pyrolyzed in a lab-scale pyrolysis plant equipped with a fluidized bed reactor in a temperature ranges of $450-650^{\circ}C$. The main object of this work is to investigate the properties of pyrolysis oil with reaction temperatures and the behavior of sulfur in the products when waste polypropylene was added for co-pyrolysis. The maximum yield of oil was about 52wt.% at the reaction temperature of $456^{\circ}C$. From GC-MS analysis, the pyrolysis oils consisted mainly of limonene, toluene, xylene, styrene, trimethylbenzene, methylnaphthalenes and some heteroatom(sulfur and nitrogen)-containing compounds. The addition of waste polypropylene resulted in decrease in sulfur contents of the pyrolysis oils.

A Study on the Fast Pyrolysis Characteristics of Biomass in a Fluidized Bed Reactor (유동층 반응기를 이용한 바이오매스의 급속열분해 특성 연구)

  • Yoo, Kyung-Seun;Eom, Min-Seop;Park, Eun-Kwang;Kim, Nam-Chan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.09a
    • /
    • pp.15-32
    • /
    • 2006
  • Biomass had been attracted public attention as eco-friendly resource which not increases the greenhouse gas like carbon dioxide. In this study, it had been collected pyrolytic products such as bio-oil, char and pyrolytic gas from various biomass in a fluidized bed reactor which is one of the fast pyrolysis processes. To understand the characteristics of biomass pyrolysis, the variation of products yield and chemical composition was determined with various operating parameters like temperature, gas velocity($U_{0}/U_{mf}$) and bed height(L/D). In the optimum operating conditions, gas yield and water content was the lowest and concentration of guaiacols and syringols were the highest. The maximum yields of bio-oil was from 55% to 58% at $400^{\circ}C$.

  • PDF

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

Characteristics of Bio-oil derived from Quercus Acutissima in a Fluidized Bed Pyrolyser (유동층 열분해로에 의하여 생산된 상수리나무 바이오오일의 특성)

  • Lee Sun-Hoon;Eom Min-Seop;Yoo Kyung-Seun;Lee Young-Soo;Kim Nam-Chan;Lee See-Hoon;Lee Jae-Goo;Kim Jae-Ho
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.3-11
    • /
    • 2006
  • Fast pyrolysis of Quercus acutissima was carried out in a fluidized bed pyrolyser and then the physicochemical properities of obtained bio-oil were analyzed using GC/MS. The yields of bio-oil of Quercus acutissima and Larix leptolepis from a fluidized bed pyrolyzer were maximized at $350^{\circ}C\;and\;400^{\circ}C$, respectively. This is due to the difference or cellulose content between the two tree species. Above the optimum temperature, the yields of char and oil decreased as the reaction temperature increased, but the yield of gas-phase and water fraction increased. It is concluded that this phenomenon is occured by secondary pyrolysis in the free board. The feeding rate of the sample in a fluidized bed pyrolyser did not affect the yields and composition of products, because of a sufficient mixing between bed materials and sand.

Pyrolysis Reaction Characteristics of Biomass Fluidized Bed Reactor (기포(氣泡) 유동층(流動層) 반응기(反應器)에서 바이오매스 열분해(熱分解) 반응특성(反應特性))

  • Lee, Sun-Hoon;Yoo, Kyung-Seun;Lee, See-Hoon;Lee, Jae-Goo;Kim, Jae-Ho
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.75-82
    • /
    • 2005
  • Pyrolysis of biomass is one of the promising methods to obtain energy and valuable chemical stocks. Fast pyrolysis of Q. acutissima and L. letolepis has been carried out in a bubbling fluidized bed reactor to determine the optimum operating conditions of the pyrolyzer. Effects of reaction temperature, Uo/Umf, L/D ratio, and feed rate have been determined and the optimum conditions are as follows: $T\;=\;400^{\circ}C,\;U_o/U_{mf}\;=\;3.0,\;L/D\;=\;2.0$. Maximum yield of bio-oil was about 55% and the main compositions were carbohydrates, guaiacols, furans, phenols, and syringols. Product gas was consists of CO, $CO_2$, light hydrocarbons and the measured gas yield using the compositions agreed with the calculated value.

  • PDF

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

Pyrolysis of Quercus Variabilis in a Bubbling Fluidized Bed Reactor (기포 유동층 반응기에서 굴참나무의 열분해반응 특성 연구)

  • Lim, Dong-Hyeon;Sim, Jae-Wook;Kim, Seung-Soo;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.687-692
    • /
    • 2016
  • Biomass has been concerned as one of the alternative energy resources because it is renewable, abundant worldwide, eco-friendly, and carbon neutral. Quercus variabilis has been studied to understand pyrolysis reaction characteristics, and to evaluate the efficiency of bio-energy production from fast pyrolysis. Quercus variabilis were fast pyrolyzed in a bubbling fluidized bed reactor at various reaction conditions. The effects of pyrolysis temperature between $400^{\circ}C$ and $550^{\circ}C$ on product yields were investigated. The yield of bio-oil was changed between 36.98 wt% and 39.14 wt%, and those of gas yield was 33.40 and 36.96 wt% with increasing reaction temperature. The higher heating value (HHV) of bio-oil at $500^{\circ}C$ ($3.0{\times}U_{mf}$) was 20.18 MJ/kg. The gas compositions were similar for all reaction conditions such as CO, $CO_2$ and $CH_4$, and $CO_2$ selectivity was the highest (37.16~50.94 mol%). The bio-oil has high selectivities for furfural, phenol and their derivatives such as 1-hydroxy-2-propanone, 2-methoxy-phenol, 1,2-benzendiol, 2,6-dimethoxy-phenol.

A Study on Combustion and Emission Characteristics of Diesel Generator Fuelled with Coffee Ground Pyrolysis Oil (커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구)

  • PARK, JUNHA;LEE, SEOKHWAN;KANG, KERNYONG;LEE, JINWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.567-577
    • /
    • 2019
  • Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsification of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated under the entire load range. Experimental results show that ignition delay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.