DOI QR코드

DOI QR Code

Energy Recovery via Pyrolysis of Waste Tire Rubber : Desulfurization Effect of Pyrolysis Oil by Adding Waste Polypropylene

폐타이어의 열분해를 통한 에너지화 : 폐폴리프로필렌 첨가 시 열분해 오일의 탈황 효과

  • Jeong, Jaeyong (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology(KITECH)) ;
  • Lee, Uendo (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology(KITECH)) ;
  • Chang, Wonseok (Frontier Research & Training Institute, Korea District Heating Corporation(KDHC)) ;
  • Oh, Munsei (Frontier Research & Training Institute, Korea District Heating Corporation(KDHC)) ;
  • Jeong, Soohwa (Frontier Research & Training Institute, Korea District Heating Corporation(KDHC))
  • 정재용 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 이은도 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 장원석 (한국지역난방공사 미래개발원) ;
  • 오문세 (한국지역난방공사 미래개발원) ;
  • 정수화 (한국생산기술연구원 고온에너지시스템그룹)
  • Received : 2017.08.14
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

In this study, waste tire rubbers were pyrolyzed in a lab-scale pyrolysis plant equipped with a fluidized bed reactor in a temperature ranges of $450-650^{\circ}C$. The main object of this work is to investigate the properties of pyrolysis oil with reaction temperatures and the behavior of sulfur in the products when waste polypropylene was added for co-pyrolysis. The maximum yield of oil was about 52wt.% at the reaction temperature of $456^{\circ}C$. From GC-MS analysis, the pyrolysis oils consisted mainly of limonene, toluene, xylene, styrene, trimethylbenzene, methylnaphthalenes and some heteroatom(sulfur and nitrogen)-containing compounds. The addition of waste polypropylene resulted in decrease in sulfur contents of the pyrolysis oils.

본 연구에서는 폐타이어의 열분해 특성을 알아보기 위하여 유동층 반응기를 이용하여 450에서 $650^{\circ}C$ 범위에서 급속 열분해를 실시하였다. 반응 온도의 변화에 따른 열분해 오일의 특성을 관찰하고 특히 폐폴리프로필렌을 폐타이어와 혼합하여 열분해를 실시할 때 열분해 부산물 내 황의 거동을 살펴보았다. 열분해 오일의 수율은 반응 온도 $456^{\circ}C$에서 약 52wt.%로 가장 높게 나타났다. 생산된 오일의 GC-MS 분석 결과 반응 온도가 증가할수록 지방족 화합물의 함량은 줄어드는 반면 방향족 화합물의 함량이 급격히 증가하는 것으로 나타났다. 주요 화합물은 리모넨(Limonene), 톨루엔(Toluene), 자일렌(Xylene), 스타이렌(Styrene), 트리메틸벤젠(Trimethylbenzene) 그리고 메틸나프탈렌류(Methylnaphthalenes)이었으며 미량의 황 화합물과 질소 화합물도 검출되었다. 폐폴리프로필렌을 폐타이어와 혼합 열분해 한 결과 열분해 오일 내 황의 함량이 급격히 감소하는 것을 관찰할 수 있었다.

Keywords

References

  1. Aylon, E., Fernandez-Colino, A., Navarro, M. V., Murillo, R., Garcia, T. and Mastral, A. M., 2008, Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor, Industrial & Engineering Chemistry Research, Vol. 47, pp. 4029-4033. https://doi.org/10.1021/ie071573o
  2. Choi, G. G., Jung, S. H., Oh, S. J. and Kim, J. S., 2014, Total utilization of waste tire rubber through pyrolysis to obtain oils and $CO_2$ activation of pyrolysis char, Fuel Processing Technology, Vol. 123, pp. 57-64. https://doi.org/10.1016/j.fuproc.2014.02.007
  3. Cho, M. H., Jung, S. H. and Kim, J. S., 2010, Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives, Energy&Fuels, Vol. 24, pp. 1389-1395.
  4. Cunliffe, A. M. and Williams, P. T., 1998, Composition of oils derived from the batch pyrolysis of tyres, Journal of Analytical and Applied Pyrolysis, Vol. 44, pp. 131-152. https://doi.org/10.1016/S0165-2370(97)00085-5
  5. Dai, X., Yin, X., Wu, C., Chuangzhi, W. and Chen, Y., 2001, Pyrolysis of waste tires in a circulating fluidized-bed reactor, Energy, Vol. 26, pp. 385-399. https://doi.org/10.1016/S0360-5442(01)00003-2
  6. Fernandez, A. M., Barriocanal, R. and Alvarez, R., 2012, Pyrolysis of a waste from the grinding of scrap tyres, Jounal of Hazardous Materials, Vol. 203-204, pp. 236-243. https://doi.org/10.1016/j.jhazmat.2011.12.014
  7. Hsi, H. C., Rood, M. J., Rostam-Abadi, M., Chen, S. and Chang, R., 2002, Mercury adsorption properties of sulfur-impregnated adsorbents, Journal of Environmental Engineering, Vol. 128, pp. 1080-1089. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1080)
  8. Helleur, R., Popovic, N., Ikura, M. and Stanciulescu, M., 2001, Characteristics and potential applications of pyrolytic char from ablative pyrolysis of used tires, Journal of Analytical and Applied Pyrolysis, Vol. 58-59, pp. 813-824. https://doi.org/10.1016/S0165-2370(00)00207-2
  9. Jung, S. H., Kim, S. J. and Kim, J. S., 2013, The influence of reaction parameters on characteristics of pyrolysis oils from high impact polystyrene and acrylonitrile-butadiene-styrene using a fluidized bed reactor, Fuel Processing Technology, Vol. 116, pp. 123-129. https://doi.org/10.1016/j.fuproc.2013.05.004
  10. Jung, S. H., Kim, S. J. and Kim, J. S., 2012, Fast pyrolysis of a waste fraction of high impact polystyrene (HIPS) containing brominated flame retardants in a fluidized bed reactor: The effects of various Ca-based additives (CaO, $Ca(OH)_2$ and oyster shells) on the removal of bromine, Fuel, Vol. 95, pp. 514-520. https://doi.org/10.1016/j.fuel.2011.11.048
  11. Jung, S. H., Cho, M. H., Kang, B. S. and Kim, J. S., 2010, Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor, Fuel Processing Technology, Vol. 91, pp. 277-284. https://doi.org/10.1016/j.fuproc.2009.10.009
  12. Koo, W. M., Jung, S. H. and Kim, J. S., 2014, Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor, Energy, Vol. 68, pp. 555-561. https://doi.org/10.1016/j.energy.2014.02.020
  13. Kyari, M., Cunliffe, A. and Williams, P. T., 2005, Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires, Energy&Fuels, Vol. 19, pp. 1165-1173. https://doi.org/10.1021/ef049686x
  14. Kaminsky, W. and Mennerich, C., 2001, Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black, Journal of Analytical and Applied Pyrolysis, Vol. 58-59, pp. 803-811. https://doi.org/10.1016/S0165-2370(00)00129-7
  15. Pakdel, H., Pantea, D. M. and Roy, C., 2001, Production of dl-limonene by vacuum pyrolysis of used tires, Journal of Analytical and Applied Pyrolysis, Vol. 57, pp. 91-107. https://doi.org/10.1016/S0165-2370(00)00136-4
  16. Quek, G. G. and Balasubramanian, R., 2013, Liquefaction of waste tires by pyrolysis for oil and chemicals-A review, Journal of Analytical and Applied Pyrolysis, Vol. 101, pp. 1-16. https://doi.org/10.1016/j.jaap.2013.02.016
  17. Ucar, S., Karagoz, S., Yanik, J., Saglam, M. and Yuksel, M., 2005, Copyrolysis of scrap tires with waste lubricant oil, Fuel Processing Technology, Vol. 87, pp. 53-58. https://doi.org/10.1016/j.fuproc.2005.06.001
  18. Williams, P. T. and Brindle, A. J., 2002, Catalytic pyrolysis of tyres: Influence of catalyst temperature, Fuel, Vol. 81, pp. 2425-2434. https://doi.org/10.1016/S0016-2361(02)00196-5