• 제목/요약/키워드: Fast Landmark Matching

검색결과 9건 처리시간 0.023초

Fast landmark matching algorithm using moving guide-line image

  • Seo Seok-Bae;Kang Chi-Ho;Ahn Sang-Il;Choi Hae-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.208-211
    • /
    • 2004
  • Landmark matching is one of an important algorithm for navigation of satellite images. This paper proposes a fast landmark matching algorithm using a MGLI (Moving Guide-Line Image). For searching the matched point between the landmark chip and a part of image, correlation matrix is used generally, but the full-sized correlation matrix has a drawback requiring plenty of time for matching point calculation. MGLI includes thick lines for fast calculation of correlation matrix. In the MGLI, width of the thick lines should be determined by satellite position changes and navigation error range. For the fast landmark matching, the MGLI provides guided line for a landmark chip we want to match, so that the proposed method should reduce candidate areas for correlation matrix calculation. This paper will show how much time is reduced in the proposed fast landmark matching algorithm compared to general ones.

  • PDF

Efficient Visual Place Recognition by Adaptive CNN Landmark Matching

  • Chen, Yutian;Gan, Wenyan;Zhu, Yi;Tian, Hui;Wang, Cong;Ma, Wenfeng;Li, Yunbo;Wang, Dong;He, Jixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4084-4104
    • /
    • 2021
  • Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot navigation and localization. The existing VPR methods are usually based on some pairwise similarity of image descriptors, so they are sensitive to visual appearance change and also computationally expensive. This paper proposes a simple yet effective four-step method that achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, based on the features extracted from existing CNN models, the regions with higher significance scores are selected as landmarks. Then, according to the coordinate positions of potential landmarks, landmark matching is improved by removing mismatched landmark pairs. Finally, considering the significance scores obtained in the first step, robust image retrieval is performed based on adaptive landmark matching, and it gives more weight to the landmark matching pairs with higher significance scores. To verify the efficiency and robustness of the proposed method, evaluations are conducted on standard benchmark datasets. The experimental results indicate that the proposed method reduces the feature representation space of place images by more than 75% with negligible loss in recognition precision. Also, it achieves a fast matching speed in similarity calculation, satisfying the real-time requirement.

SMTG 알고리즘을 이용한 랜드마크의 고속정합

  • 서석배;강치호
    • 항공우주기술
    • /
    • 제4권2호
    • /
    • pp.230-235
    • /
    • 2005
  • 본 논문에서는 통신해양기상위성의 선행연구로써 SMTG 알고리즘을 이용한 고속의 랜드마크 정합 방법을 제안한다. 비교실험을 통하여 일반적인 방법보다 계산 시간을 대폭 줄일 수 있음을 확인하였다.

  • PDF

군집 로봇의 동시적 위치 추정 및 지도 작성 (Simultaneous Localization and Mapping For Swarm Robot)

  • 문현수;신상근;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.296-301
    • /
    • 2011
  • 본 논문에서는 군집 로봇의 동시적 위치 추정 및 지도 작성 시스템을 제안하였다. 로봇은 실험환경에서 주변 환경을 인식하기 위해 초음파센서와 비젼 센서를 이용하였다. 실험환경을 3개의 영역으로 분할하였고, 로봇은 각 영역에서 초음파 센서로 주변 환경에 대한 거리 정보를 측정하였고, SURF 알고리즘을 이용하여 비젼 센서로부터 입력받은 영상과 landmark의 특징점을 정합하여 랜드마크를 인식하였다. 제안된 방법은 센서값들에 대한 오차에 민감하지 않고 실험환경에 비교적 정확한 지도를 작성함으로써 응용 가능성을 증명하였다.

정지궤도 기상위성의 자동기하보정 (Automated Geometric Correction of Geostationary Weather Satellite Images)

  • 김현숙;이태윤;허동석;이수암;김태정
    • 대한원격탐사학회지
    • /
    • 제23권4호
    • /
    • pp.297-309
    • /
    • 2007
  • 2008년 12월 우리나라 최초의 통신해양기상위성이 발사될 예정이다. 통신해양기상위성의 지상국은 위성영상 데이터의 정확도 향상을 위해 사용자에게 기하보정된 영상을 공급해야 한다. 이때 지상국에 요구되는 처리시간은 30분 내외이며, 전체 처리시간의 준수를 위해 자동기하보정의 기술개발과 기하보정시 수행시간의 효율성이 중요하다. 자동기하보정은 위성의 영상좌표계와 지구좌표계상의 수학적인 관계를 나타내는 센서모델을 자동으로 수립하여 기하보정을 수행하는 것이다. 센서모델 수립을 위해 사용되는 기준점은 위성영상과 랜드마크 칩간의 정합결과를 통해서 자동으로 결정되어다. 실험에 사용한 위성영상은 GOES-9영상이며 실험을 위해 전세계 해안선 데이터베이스를 사용하여 랜드마크 칩을 211개 생성하였다. 위성영상에 존재하는 구름은 위성영상과 랜드마크 칩간의 정합시 오정합을 유발하므로 GOES-9영상의 채널1과 채널2영상에서 구름검출을 수행하여 구름이 아닌 지역에 대해서만 정합을 수행하였으며 가시영상인 채널1영상에서 밤시간이 아닌 지역에 대해서만 정합이 수행될 수 있도록 밤낮을 구분하여 처리하였다. 이때 정합결과는 오정합(Outlier)이 포함되어 있어 강인추정기법 중 하나인 RANSAC을 사용하여 이를 제거하였다. 강인추정기법으로 오정합이 제거된 정합결과를 기준점으로 사용하여 센서모델을 수립하였다. 수립된 모델의 정확도는 채널1영상의 해상도를 기준으로 하였을 때 $1{\sim}2$ 픽셀의 에러가 나타났고 기하보정된 영상에 해안선을 투영하여 센서모델의 정확도를 육안으로 확인하였다. 이때 위성영상의 해안선과 투영된 해안선이 일치함으로써 기하보정이 잘 이뤄졌음을 알 수 있었다. 실험결과 정합된 RANSAC, 센서모델 수립 및 자동기하 보정의 전체 처리시간은 약 4분여가 소요되었다. 이로써 본 논문에서 제안된 자동기하보정방법은 기하보정이 효과적으로 이뤄지고 있으며, 또한 통신해양기상위성의 전처리요구시간에도 만족함을 보여주고 있다.

옴니 카메라의 전방향 영상을 이용한 이동 로봇의 위치 인식 시스템 (Omni Camera Vision-Based Localization for Mobile Robots Navigation Using Omni-Directional Images)

  • 김종록;임미섭;임준홍
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.206-210
    • /
    • 2011
  • Vision-based robot localization is challenging due to the vast amount of visual information available, requiring extensive storage and processing time. To deal with these challenges, we propose the use of features extracted from omni-directional panoramic images and present a method for localization of a mobile robot equipped with an omni-directional camera. The core of the proposed scheme may be summarized as follows : First, we utilize an omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Second, Nodes around the robot are extracted by the correlation coefficients of Circular Horizontal Line between the landmark and the current captured image. Third, the robot position is determined from the locations by the proposed correlation-based landmark image matching. To accelerate computations, we have assigned the node candidates using color information and the correlation values are calculated based on Fast Fourier Transforms. Experiments show that the proposed method is effective in global localization of mobile robots and robust to lighting variations.

뼈대-구조 능동형태모델을 이용한 사람의 자세 정합 (Human Pose Matching Using Skeleton-type Active Shape Models)

  • 장창혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.996-1008
    • /
    • 2009
  • 본 논문은 뼈대-구조(skeleton) 형태의 Active Shape Models을 이용한 사람의 자세 정합에 대한 새로운 접근 방법을 제안한다. 제안된 방법은 모델 생성과 정합 과정에서의 빠른 수행 시간을 위해 기존 윤곽 형태(silhouette)의 모델이 아닌 뼈대-구조 형태의 모델을 적용하였다. 기존 Active Shape Models을 뼈대-구조 형태로 사람 자세 정합에 적용했을 경우 자세를 결정짓는 팔과 다리의 부정확한 정합은 사람 몸의 다양한 색상 정보와 전후(fore-rear direction)만을 고려한 특징점(landmark)의 방향정보로 인해 발생되며, 이러한 문제점은 입력 영상의 차영상 정보와 사람의 자세를 결정짓는 팔과 다리의 중요 특징점에 방향정보를 추가하여 해결하였다. 사람의 뼈대-구조 모델을 생성하기 위해 600개의 이미지를 사용 하였으며, 생성된 형태 모델은 사람의 자세에 정합될 수 있는 17개의 특징점을 포함한다. 정합 과정에서 최대 30번 이하의 반복 과정을 수행 하며, 최대 수행 시간은 0.03초로 빠른 수행 시간의 결과를 얻었다.

모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실 (A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device)

  • 조비성;누르지드;장철희;이기성;조근식
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.1-21
    • /
    • 2012
  • 최근 스마트폰의 등장으로 인해 사용자들은 시간과 공간의 제약 없이 스마트폰을 이용한 새로운 의사소통의 방법을 경험하고 있다. 이러한 스마트폰은 고화질의 컬러화면, 고해상도 카메라, 실시간 3D 가속그래픽과 다양한 센서(GPS와 Digital Compass) 등을 제공하고 있으며, 다양한 센서들은 사용자들(개발자, 일반 사용자)로 하여금 이전에 경험하지 못했던 서비스를 경험할 수 있도록 지원하고 있다. 그 중에서 모바일 증강현실은 스마트폰의 다양한 센서들을 이용하여 개발할 수 있는 대표적인 서비스 중 하나이며, 이러한 센서들을 이용한 다양한 방법의 모바일 증강현실 연구들이 활발하게 진행되고 있다. 모바일 증강현실은 크게 위치 정보 기반의 서비스와 내용 기반 서비스로 구분할 수 있다. 위치 정보 기반의 서비스는 구현이 쉬운 장점이 있으나, 증강되는 정보의 위치가 실제의 객체의 정확한 위치에 증강되는 정보가 제공되지 않는 경우가 발생하는 단점이 존재한다. 이와 반대로, 내용 기반 서비스는 정확한 위치에 증강되는 정보를 제공할 수 있으나, 구현 및 데이터베이스에 존재하는 이미지의 양에 따른 검색 속도가 증가하는 단점이 존재한다. 본 논문에서는 위치 정보 기반의 서비스와 내용기반의 서비스의 장점들을 이용한 방법으로, 스마트폰의 다양한 센서(GPS, Digital Compass)로 부터 수집된 정보를 이용하여 데이터베이스의 탐색 범위를 줄이고, 탐색 범위에 존재하는 이미지들의 특징 정보를 기반으로 실제의 랜드마크를 인식하고, 인식한 랜드마크의 정보를 링크드 오픈 데이터(LOD)에서 검색하여 해당 정보를 제공하는 랜드마크 가이드 시스템을 제안한다. 제안하는 시스템은 크게 2개의 모듈(랜드마크 탐색 모듈과 어노테이션 모듈)로 구성되어있다. 첫 번째로, 랜드마크 탐색 모듈은 스마트폰으로 인식한 랜드마크(건물, 조형물 등)에 해당하는 정보들을 (텍스트, 사진, 비디오 등) 링크드 오픈 데이터에서 검색하여 검색된 결과를 인식한 랜드마크의 정확한 위치에 정보를 제공하는 역할을 한다. 스마트폰으로부터 입력 받은 이미지에서 특징점 추출을 위한 방법으로는 SURF 알고리즘을 사용했다. 또한 실시간성을 보장하고 처리 속도를 향상 시키기 위한 방법으로는 입력 받은 이미지와 데이터베이스에 있는 이미지의 비교 연산을 수행할 때 GPS와 Digital Compass의 정보를 사용하여 그리드 기반의 클러스터링을 생성하여 탐색 범위를 줄임으로써, 이미지 검색 속도를 향상 시킬 수 있는 방법을 제시하였다. 두 번째로 어노테이션 모듈은 사용자들의 참여에 의해서 새로운 랜드마크의 정보를 링크드 오픈 데이터에 추가할 수 있는 기능을 제공한다. 사용자들은 키워드를 이용해서 링크드 오픈 데이터로에서 관련된 주제를 검색할 수 있으며, 검색된 정보를 수정하거나, 사용자가 지정한 랜드마크에 해당 정보를 표시할 수 있도록 지정할 수 있다. 또한, 사용자가 지정하려고 하는 랜드마크에 대한 정보가 존재하지 않는다면, 사용자는 랜드마크의 사진을 업로드하고, 새로운 랜드마크에 대한 정보를 생성하는 기능을 제공한다. 이러한 과정은 시스템이 카메라로부터 입력 받은 대상(랜드마크)에 대한 정확한 증강현실 컨텐츠를 제공하기 위해 필요한 URI를 찾는데 사용되며, 다양한 각도의 랜드마크 사진들을 사용자들에 의해 협업적으로 생성할 수 있는 환경을 제공한다. 본 연구에서 데이터베이스의 탐색 범위를 줄이기 위해서 랜드마크의 GPS 좌표와 Digital Compass의 정보를 이용하여 그리드 기반의 클러스터링 방법을 제안하여, 그 결과 탐색시간이 기존에는 70~80ms 걸리는 반면 제안하는 방법을 통해서는 18~20ms로 약 75% 정도 향상된 것을 확인할 수 있었다. 이러한 탐색시간의 감소는 전체적인 검색시간을 기존의 490~540ms에서 438~480ms로 약 10% 정도 향상된 것을 확인하였다.

화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법 (Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars)

  • 김재인
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1015-1023
    • /
    • 2022
  • 착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.