• Title/Summary/Keyword: Fast Cook Off

Search Result 6, Processing Time 0.017 seconds

Thermal Analysis for Solid Rocket Motor exposed to Fast Cook Off (급속가열 상황에 있는 고체 추진기관에 대한 열해석)

  • Doh, Young-Dae;Yoo, Ji-Chang;Kim, Chang-Kee;Lee, Do-Hyung;Ham, Hee-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.196-199
    • /
    • 2009
  • The most important thing is to analyze the Fast Cook Off problem of the solid motor case exposed to direct flame is a heat transfer analysis. Heat causes degradation and ignition of the propellant. To archive an acceptable reaction level in Fast Cook Off, the rocket motor case generally must fail structurally prior to propellant ignition. We investigate the responses of the solid motor case exposed to Fast Cook Off by using finite element method for the thermal analysis.

  • PDF

Fast Cook-Off Test and Evaluation for HTPE IM Rocket Motor (HTPE 둔감 추진기관의 급속가열 시험 및 평가)

  • Lee, Do-Hyung;Kim, Chang-Kee;Yeon, Jeong-Mo;Jung, Jung-Young;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.167-170
    • /
    • 2009
  • Fast cook-off test with rocket motors was performed and characteristics of the results were analyzed. The material of the motor case was carbon epoxy composite. The motor was loaded with HTPE propellants to improve the insensitive munitions characteristics. In the tests, sound pressure and heat flux sensors were used to determine the category of response according to the standard. The reaction response of all of the HTPE motors tested by fast cook-off was judged as Type V burning.

  • PDF

Cook-off Test & Evaluation of Solid Rocket Motor (고체 추진기관의 Cook-off 시험 평가)

  • Yoo Ji-Chang;Choi Chang-Sun;Nuyttens JY.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.307-310
    • /
    • 2005
  • This Study was performed for the Insensitive Munition Technology Program contract between Roxel and ADD. Two Slow Coo-off(SCO) tests and One fast Cook-off(FCO) test have been made based on MIL-STD-2105C. SCO and FCO tests were made in order to evaluate the behaviour of the hybrid rocker motor with insensitive igniter and two types of propellants of which burning rates were 9.8 mm/s and 21.2 mm/s @ 7 MPa each other. The Reaction level of the two rocker motors to SCO test was classified as type IV and that of FCO test was classified as type V.

  • PDF

A Study on Safety Evaluation Method of Lithium Secondary Battery Module for Military Operation (리튬 2차전지 모듈의 전장운용을 위한 안전성 평가기법 연구)

  • Yoo, Eun Ji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.378-386
    • /
    • 2014
  • In this paper, safety evaluation method simulating battlefield environment was studied to verify military operability of commercial lithium secondary battery. Based on the MIL-STD-2105D and STANAG standards, safety tests of lithium secondary battery module were conducted, such as bullet impact, fragment impact, fast cook-off and slow cook-off. All results satisfied the safety evaluation criteria, founded on military standard. It suggests that the lithium secondary module has high potential to be applied in a military power source. The safety evaluation methods developed in this paper can be valuable to propose the new military standards for commercial lithium secondary batteries.

The Trend of Mitigation Devices for Insensitive Munition of Solid Rocket Motor (고체 추진기관 둔감화를 위한 완화장치의 연구 동향)

  • Ryu Byung-Tae;Yoon Ki-Eun;Jung Jin-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Insensitive Munitions(IM) of solid propulsion system are defined as munitions that fulfil the performance and operational requirements, but will minimize the violence of a reaction when subjected to inadvertant stimuli. It should be clear that the reaction violence of rocket motor subjected to thermal stimuli can be mitigated by reducing confinement prior to propellant reaction. Devices designed to do this by venting the rocket motor case are commonly referred to as mitigation devices. The objective of this paper is to introduce the technical information related to the pyrotechnic mitigation devices for insensitive munition of solid rocket motor.

  • PDF

A Study on Insensitive Munition Test and Evaluation for Solid Rocket Motor (고체추진기관 둔감시험 평가 기법에 관한 연구)

  • Lee, Do-Hyung;Kim, Chang-Kee;Lee, Hwan-Gyu;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.129-132
    • /
    • 2010
  • The objective of IM rocket motor is to minimize the probability of inadvertent initiation and severity of subsequent collateral damage, hence it is important to define personnel and equipment survivability to a rocket motor accident. The violent response probability associated with shock, impact and thermal effects be minimized. And during production, transportation/storage and stack of rocket motor, sympathetic detonation, giving severe effects of the propagation of adverse reaction on its surroundings, be reduced. Hence Reaction type also based on reaction results of the overpressure, fragment throw and heat flux.

  • PDF