• Title/Summary/Keyword: Faraday reaction

Search Result 10, Processing Time 0.024 seconds

Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction (Pt포일 양극을 이용한 전기화학적 암모니아 수전해 특성 연구)

  • CHOI, JEONGMIN;KIM, HAKDEOK;SONG, JUHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.337-342
    • /
    • 2022
  • In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.

Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode (은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승)

  • Noh, Young Moo;Jin, Si Hyung;Jeong, Seong-Geun;Kim, Nam Young;Rho, Changhyun;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.472-477
    • /
    • 2015
  • This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.

A study on the characterization of electrode at graphite materials by impedance spectroscopy (임피던스를 이용한 흑연재료의 전극특성에 관한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.571-583
    • /
    • 1996
  • The electrochemical behavior on electrographite and graphite foil electrode with porous surface in 0.5 M $K_{2}SO_{4}$ solution with 1 mM $[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}$ have been characterized by impedance spectroscopy. In cyclic voltammograms, relative high current according to structure of porous surface for graphite materials was represented, and indicated hgih double layer capacitance on graphite foil. The faraday-impedance and the change of impedance spectrum on both graphite materials were not remarkable during polarization by reaction of field transport. Chemical adsorption was represented on electrographite and was depended highly at anodic polarization.

  • PDF

Eddy Current Loss Analysis of Slotless Double-sided Cored Type Permanent Magnet Generator by using Analytical Method (해석적 방법을 이용한 슬롯리스 양측식 코어드 타입 영구자석 발전기의 와전류 손실 해석)

  • Jang, Gang-Hyeon;Jung, Kyoung-Hun;Hong, Keyyong;Kim, Kyong-Hwan;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1639-1647
    • /
    • 2016
  • This paper deals with eddy current loss analysis of Slotless Double sided Cored type permanent magnet linear generator by using analytical method, space harmonic method. In order to calculate eddy current, this paper derives analytical solution by the Maxwell equation, magnetic vector potential, Faraday's law and a two-dimensional(2-D) cartesian coordinate system. First, we derived the armature reaction field distribution produced by armature wingding current. Second, by using derived armature reaction field solution, the analytical solution for eddy current density distribution are also obtained. Finally, the analytical solution for eddy current loss induced in permanent magnets(PMs) are derived by using equivalent, electrical resistance calculated from PMs volume and eddy current density distribution solution. The analytical result from space harmonic method are validated extensively by comparing with finite element method(FEM).

A Study on Analysis of the Hydrogen-Oxygen Gas Generator Using Pulse Power Supply (펄스전원에 의한 수산화가스 발생기에 관한 연구)

  • 이정민;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.377-385
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electricity for the Hydrogen-Oxygen gas generator, Firstly chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated through Faraday's laws of electrolysis. After that, pulse power supply is designed for basic experiment which could be applied to the analysis of Hydrogen-Oxygen gas generator. In the basis of above steps, comparison and analysis of Hydrogen-Oxygen gas generator was conducted as variable frequency using pulse Power supply.

  • PDF

Mesoporous Carbon Electrodes for Capacitive Deionization (축전식 탈염 공정을 위한 메조포러스 탄소 전극)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Carbon electrodes for capacitive deionization were fabricated through mixing two different carbon powders (activated carbon powder, carbon black) with different particle sizes to investigate physical or electrochemical properties and finally desalination performances of the electrodes with various compositions of two carbon powders in weight and were compared with the electrode consisting of activated carbon. As a result, the electrode structure became more packed as increasing the amount of carbon black and resulted in 10% increase in mesopore fraction. The specific capacitance obtained from cyclic voltammograms of various electrodes showed that the electrode containing carbon black only had 107.4 F/g, while the specific capacitance of the electrode having more amount of carbon black increased and was higher than the one having no carbon black. The results of desalination runs in a capacitive deionization cell exhibited that the electrode having the highest amount of carbon black (1 wt%) in this study had the highest desalting efficiency, and no significant pH variation was observed during the runs. It was analyzed using accumulated charge that the fraction of non-Faraday current increased as the amount of carbon black increased in the electrodes. It can be concluded that the addition of carbon black changed the electrode structure resulting in an increase in the fraction of mesopore and finally enhanced the desalting efficiency by decreasing Faraday current.

Study on Vibration Energy Harvesting with Small Coil for Embedded Avian Multimedia Application

  • Nakada, Kaoru;Nakajima, Isao;Hata, Jun-ichi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated with physical simulator is equal to or exceeds the 7 V peak-to-peak at maximum by 560/min of flapping of wings. Even if we account for the junction voltage of the diode (200 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the high-voltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient for subcutaneous area of birds. The efficiency, magnetic 2 mm in length and coil 15mm in length, if axial direction is rectified, the magnetic flux density given to the coil could calculated to 7.1 % and generated power average 0.47mW. The improvements in size and wire insulation are expected in the future.

Study on the surface reactions of carbon and graphite electrodes in sulfuric acid solution (황산 용액중의 분극시 나타나는 탄소전극들의 계면반응)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.648-662
    • /
    • 1996
  • Electrode surface reaction on glassy carbon and synthesized graphite (PVDF mixed graphite) in sulfuric acid solution is investigated by impedance spectroscopy at cyclic polarization. The redox peak, which may be due to the change of chemical adsorped functional group on electrode surface or oxidation and reduction of oxygen, is represented on glassy carbon and graphite electrode in potentio-dynamic current curve. The oxidation and reduction of these surface functional group on glassy carbon and PVDF mixed graphite have a major affect on the impedance spectrum and Faraday impedance parameter at cyclic polarization.

  • PDF

Effect of Current Density on Material Removal in Cu ECMP (구리 ECMP에서 전류밀도가 재료제거에 미치는 영향)

  • Park, Eunjeong;Lee, Hyunseop;Jeong, Hobin;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.79-85
    • /
    • 2015
  • RC delay is a critical issue for achieving high performance of ULSI devices. In order to minimize the RC delay time, we uses the CMP process to introduce high-conductivity Cu and low-k materials on the damascene. The low-k materials are generally soft and fragile, resulting in structure collapse during the conventional high-pressure CMP process. One troubleshooting method is electrochemical mechanical polishing (ECMP) which has the advantages of high removal rate, and low polishing pressure, resulting in a well-polished surface because of high removal rate, low polishing pressure, and well-polished surface, due to the electrochemical acceleration of the copper dissolution. This study analyzes an electrochemical state (active, passive, transpassive state) on a potentiodynamic curve using a three-electrode cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) in a potentiostat to verify an electrochemical removal mechanism. This study also tries to find optimum conditions for ECMP through experimentation. Furthermore, during the low-pressure ECMP process, we investigate the effect of current density on surface roughness and removal rate through anodic oxidation, dissolution, and reaction with a chelating agent. In addition, according to the Faraday’s law, as the current density increases, the amount of oxidized and dissolved copper increases. Finally, we confirm that the surface roughness improves with polishing time, and the current decreases in this process.

Application of Capacitive Deionization for Desalination of Mining Water (광산수의 탈염을 위한 축전식 탈염기술의 적용)

  • Lee, Dong-Ju;Kang, Moon-Sung;Lee, Sang-Ho;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.