Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.4.337

Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction  

CHOI, JEONGMIN (School of Mechanical Engineering, Pusan National University)
KIM, HAKDEOK (School of Mechanical Engineering, Pusan National University)
SONG, JUHUN (School of Mechanical Engineering, Pusan National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.4, 2022 , pp. 337-342 More about this Journal
Abstract
In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.
Keywords
Water electrolysis; Ammonia; Electrochemical reaction; H2 production; Faraday efficiency; cyclic voltametry, CV;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Lan, J. T. S. Irvine, and S. Tao, "Ammonia and related chemicals as potential indirect hydrogen storage materials", Int. J. Hydrogen Energy, Vol. 37, No. 2, 2012, pp. 1482-1494, doi: https://doi.org/10.1016/j.ijhydene.2011.10.004.   DOI
2 J. H. Woo, T. Y. Kim, J. E. Kim, B. Cho, S. Jung, S. Park, S. C. Lee, and J. C. Kim, "Ni catalyst properties for ammonia reforming: comparison of Ni content and space velocity", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 464-469, doi: https://doi.org/10.7316/KHNES.2021.32.6.464.   DOI
3 H. L. Jiang, S. K. Singh, J. M. Yan, X. B. Zhang, and Q. Xu, "Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions", ChemSusChem, Vol. 3, No. 5, 2010, pp. 541-549, doi: https://doi.org/10.1002/cssc.201000023.   DOI
4 S. Lee and H. J. Lee, "Potential applicabilities of ammonia in future hydrogen energy supply industries", Appl. Chem. Eng., Vol. 30, No. 6, 2019, pp. 667-672, doi: https://doi.org/10.14478/ace.2019.1094.   DOI
5 J. Gwak, M. Choun, and J. Lee, "Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production", ChemSusChem, Vol. 9, No. 4, 2016, pp. 403-408, doi: https://doi.org/10.1002/cssc.201501046.   DOI
6 Y. Yang, J. Kim, H. Jo, A. Seong, M. Lee, H. K. Min, M. G. Seo, Y. Choi, and G. Kim, "A rigorous electrochemical ammonia electrolysis protocol with in operando quantitative analysis", J. Mater. Chem. A, Vol. 9, No. 19, 2021, pp. 11571-11579, doi: https://doi.org/10.1039/D1TA00363A.   DOI
7 T. L. Lomocso and E. A. Baranova, "Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles", Electrochim. Acta, Vol. 56, No. 24, 2011, pp. 8551-8558, doi: https://doi.org/10.1016/j.electacta.2011.07.041.   DOI
8 A. C. A. De Vooys, M. T. M. Koper, R. A. Van Santen, and J. A. R. Van Veen, "The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes", J. Electroanal. Chem., Vol. 506, No. 2, 2001, pp. 127-137, doi: https://doi.org/10.1016/S0022-0728(01)00491-0.   DOI
9 F. Vitse, M. Cooper, and G. G. Botte, "On the use of ammonia electrolysis for hydrogen production", Journal of Power Sources, Vol. 142, No. 1-2, 2005, pp. 18-26, doi: https://doi.org/10.1016/j.jpowsour.2004.09.043.   DOI
10 R. Palaniappan and G. G. Botte, "Effect of ammonia on Pt, Ru, Rh, and Ni cathodes during the alkaline hydrogen evolution reaction", J. Phys. Chem. C, Vol. 117, No. 34, 2013, pp. 17429-1744, doi: https://doi.org/10.1021/jp405191c.   DOI
11 M. Jiang, D. Zhu, and X. Zhao, "Electrolysis of ammonia for hydrogen production catalyzed by Pt and Pt-Ir deposited on nickel foam", Journal of Energy Chemistry, Vol. 23, No. 1, 2014, pp. 1-8, doi: https://doi.org/10.1016/S2095-4956(14)60110-8.   DOI
12 S. Wasmus, E. J. Vasini, M. Krausa, H. T. Mishima, and W. Vielstich, "DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide", Electrochim Acta., Vol. 39, 1994, PP. 23-31.   DOI
13 H. Zhang, Y. Wang, Z. Wu, and D. Y. Leung, "An ammonia electrolytic cell with NiCu/C as anode catalyst for hydrogen production", Energy Procedia, Vol. 142, 2017, pp. 1539-1544, doi: https://doi.org/10.1016/j.egypro.2017.12.605.   DOI