Browse > Article
http://dx.doi.org/10.9713/kcer.2015.53.4.472

Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode  

Noh, Young Moo (Department of Chemical Engineering, Chungnam National University)
Jin, Si Hyung (Department of Chemical Engineering, Chungnam National University)
Jeong, Seong-Geun (Department of Chemical Engineering, Chungnam National University)
Kim, Nam Young (Department of Chemical Engineering, Chungnam National University)
Rho, Changhyun (Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.53, no.4, 2015 , pp. 472-477 More about this Journal
Abstract
This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.
Keywords
Microfluidics; Droplet; Picoinjector; Silver Nanoparticles; Electrode;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006).   DOI
2 Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).
3 Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-84(2013).   DOI   ScienceOn
4 Jang, S. C., Jeong, H. H. and Lee, C. S., "Analysis of Pseudomonas Aeruginosa Motility in Microchannels," Korean Chem. Eng. Res., 50, 743-748(2012).
5 Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas Aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26(2), 351-6(2010).   DOI
6 Kang, S. M., Choi, C. H., Hwang, S., Jung, J. M. and Lee, C. S., "Microfluidic Preparation of Monodisperse Multiple Emulsion Using Hydrodynamic Control," Korean Chem. Eng. Res., 50, 733-737(2012).   DOI   ScienceOn
7 Nam, J. O., Choi, C. H., Kim J., Kang, S. M. and Lee, C. S., "Fabrication of Polymeric Microcapsules in a Microchannel Using Formation of Double Emulsion," Korean Chem. Eng. Res., 51(5), 597-601(2013).   DOI
8 Ko, K. K. and Kim, I. H., "Lysozyme Crystallization in Dropletbased Microfluidic Device," Korean Chem. Eng. Res., 51(6), 760-765(2013).   DOI
9 Song, Y. S. and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52(5), 632-637(2014).   DOI
10 Jeong, H. H., Noh, Y. M., Jang, S. C. and Lee, C. S., "Dropletbased Microfluidic Device for High-throughput Screening," Korean Chem. Eng. Res., 52(2), 141-153(2014).   DOI
11 Jin, S. H., Kim, J., Jang, S. C., Noh, Y. M. and Lee, C. S., "Stagnation of Droplet for Efficient Merging in Microfluidic System," Korean Chem. Eng. Res., 52(1), 106-112(2014).   DOI
12 Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C. C., Chain, P. S., Hallam, S. J. and Hansen, C. L., "A Programmable Droplet-based Microfluidic Device Applied to Multiparameter Analysis of Single Microbes and Microbial Communities," Proc. Natl. Acad. Sci. USA, 109(20), 7665-7670(2012).
13 Liu, K., Ding, H., Chen, Y. and Zhao, X. Z., "Droplet-based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid. Nanofluid., 3, 239-243(2007).   DOI
14 Miller, O. J., Harrak, A. E., Mangeat, T., Baret, J. C., Frenz, L., Debs, B. E., Mayot, E., Samuels, M. L., Rooney, E. K., Dieu, P., Galvan, M., Link, D. R. and Griffiths, A. D., "High-resolution Dose-response Screening Using Droplet-based Microfluidics," Proc. Natl. Acad. Sci. USA, 109(2), 378-383(2012).
15 Baroud, C. N., de Saint Vincent, M. R. and Delville, J. P., "An Optical Toolbox for Total Control of Droplet Microfluidics," Lab Chip, 7(8), 1029-1033(2007).   DOI
16 Niu, X., Gulati, S., Edel, J. B. and deMello, A. J., "Pillar-induced Droplet Merging in Microfluidic Circuits," Lab Chip, 8(11), 1837-1841(2008).   DOI
17 Xu, B., Nguyen, N. and Wong, T. N., "Temperature-induced Droplet Coalescence in Microchannels," Biomicrofluidics, 6, 012811(2012).   DOI
18 Mazutis, L., Baret, J. C., Treacy, P., Skhiri, Y., Araghi, A. F., Ryckelynck, M., Taly, V. and Griffiths, A. D., "Multi-step Microfluidic Droplet Processing: Kinetic Analysis of an in vitro Translated Enzyme," Lab Chip, 9(20), 2902-2908(2009).   DOI
19 Zagnoni, M., Lain, G. L. and Cooper, J. M., "Electrocoalescence Mechanisms of Microdroplets Using Localized Electric Fields in Microfluidic Channels," Langmuir, 26(18), 14443-14449(2010).   DOI
20 Ahn, K. and Agresti, J., "Electrocoalescence of Drops Synchronized by Size-dependent Flow in Microfluidic Channels," Appl. Phys. Lett., 88, 264105(2006).   DOI
21 Mazutis, L. and Griffiths, A. D., "Selective Droplet Coalescence Using Microfluidic Systems," Lab Chip, 12(10), 1800-1806(2012).   DOI   ScienceOn
22 Khosla, A., "Nanoparticle-doped Electrically-conducting Polymers for Flexible Nano-micro Systems," Interface, 21, 67(2012).
23 Niu, X., Gielen, F., Edel, J. B. and deMello, A. J., "A Microdroplet Dilutor for High-throughput Screening," Nat. Chem., 3(6), 437-442(2011).   DOI
24 Abate, A. R., Hung, T., Mary, P., Agresti, J. J. and Weitz, D. A., "High-throughput Injection with Microfluidics Using Picoinjectors," Proc. Natl. Acad. Sci. USA, 107(45), 19163-19166(2010).
25 Sciambi, A. and Abate, A. R., "Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes," Lap Chip, 14(15), 2605-2609(2014).   DOI
26 Holtze, C., Rowat, A. C., Agresti, J. J., Hutchison, J. B., Angile, F. E., Schmitz, C. H. J., Koster, S., Duan, H., Humphry, K. J., Scanga, R. A., Johnson, J. S., Pisignano, D. and Weitz, D. A., "Biocompatible Surfactants for Water-in-fluorocarbon Emulsions," Lab Chip, 8(10), 1632-1639(2008).   DOI
27 Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z. D., Cristobal, G., Marquez, M. and Weitz, D. A., "Electric Control of Droplets in Microfluidic Devices," Angew. Chem. Int. Ed. Engl, 45(16), 2556-2560(2006).   DOI
28 Sciambi, A. and Abate, A. R., "Adding Reagent to Droplets with Controlled Rupture of Encapsulated Double Emulsions," Biomicrofluidics, 7, 044112-1(2013).   DOI
29 Zhou, J., Ren, K., Zheng, Y., Su, J., Zhao, Y., Ryan, D. and Wu, H., "Fabrication of a Microfluidic Ag/AgCl Reference Electrode and Its Application for Portable and Disposable Electrochemical Microchips," Electrophoresis, 31, 3083-3089(2010).   DOI
30 O'Donovan, B., Eastburn, D. J. and Abate, A. R., "Electrode-free Picoinjection of Microfluidic Drops," Lap Chip, 12(20), 4029-4032(2012).   DOI
31 Rhee, M., Light, Y. K., Yilmaz, S., Adams, P. D., Saxena, D., Meagher, R. J. and Singh, A. K., "Pressure Stabilizer for Reproducible Picoinjection in Droplet Microfluidic Systems," Lap Chip, 14(23), 4533-4539(2014).   DOI