• 제목/요약/키워드: Faraday Effect Cell

검색결과 9건 처리시간 0.022초

BSO와 YIG를 이용한 임펄스 전압, 전류 측정용 광센서 구현 (An implementation of fiber-optic sensors for impulse voltage and current measurement using a BSO and an YIG)

  • 송재성;김영수
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.688-693
    • /
    • 2000
  • In this paper an optical voltage sensor and an optical current sensor which can be used for the measurement of impulse voltage and current are implemented. BSO single crystal is utilized as a voltage sensor(Pockels effect cell). An rare earth doped YIG is used as a current sensor(Faraday effect cell). A new signal processing technique is adopted not only to avoid the influences o external optical fiber pertubations of transmitting optical fiber but also to improves the frequency response characteristics of the fiber-optic voltage and current sensors. Experimental results show that optical voltage sensor has maximum 2.5% error within the voltage range from 0V to 500V. and optical current sensor has maximum 2.5% error within the current range and that of optical current sensor is about 1.5% within temperature range from -2$0^{\circ}C$ to 6$0^{\circ}C$. The proposed optical sensors have good frequency response characteristics within the frequency range from DC to 10MHz.

  • PDF

고출력 SOEC 시스템의 매개변수 연구 (Parametric Study on High Power SOEC System)

  • 뚜안앵;김영상;잡반티엔;이동근;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.470-476
    • /
    • 2021
  • In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.

Pt포일 양극을 이용한 전기화학적 암모니아 수전해 특성 연구 (Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction)

  • 최정민;김학덕;송주헌
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.337-342
    • /
    • 2022
  • In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.

유전체 층을 이용한 수중 은 나노입자의 소형화 제조 (Finer Silver Nano-Particle Producing in Water Utilizing a Dielectric Bed)

  • 문재덕
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2250-2255
    • /
    • 2010
  • An fine silver particle has a variety of uses, such as in killing micrograms and as catalysts. Many techniques have been used for the production of the fine particles. Faraday cell, consisting of two silver electrodes in an electrolyte, is unique, but it is hard to get a very fine particle by this method. A finer silver nano-particle producing cell, utilizing a dielectric bed as a lower electric current and higher field controlling means, has been proposed and investigated. The I-V characteristics of the cell and effect of the dielectric bed on the producing finer silver nano-particles have been investigated. The I-V characteristics of the cell with the dielectric bed were different from that of the same system without the bed, due to the increased cell resistance and elevated electric field intensity. It is found that the proposed cell with the dielectric bed can produce finer silver nano-particles effectively, which, however, can be used as one of effective fine silver nano-particle producing means.

A-8 Three -Dimensional Crystalizing Combined $\pi$-Bonding Orbitals ("O" S' Bonding) And Electrical And Mechanical Properties of Alloy Metals

  • Oh, Hung-Kuk
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.90-106
    • /
    • 1995
  • The "O"S' BONDING make metallic and non-metalic crystal structures and form localized superconducting orbitals , which induce electrical conduction , semi-conduction, and superconduction. The orbitals are proced by Ampere's law, Faraday's law , Meissner effect, highcritical temperature of thecopper oxide layers. abnomal trans-membrane signal in cancer cell and plastic deformations bytwins and dislocations, In the case of alloying metals, the most deterimentla cases of electrical conduction are those of solid solution and intermetalic compound . The highest case for the hardness are also those of solid solution and intermetallic compound. It explains the contributions of the "O"S' BONDING for conduction bands and plastic deformation by twins and dislocations.ns and dislocations.

  • PDF

Rb D1 전이선에서 원자결맞음에 의한 비선형 광자기 효과 (Nonlinear magneto-optic effect based on atomic coherence in Rb D1-line)

  • 문한섭;이원규;안문희;김중복
    • 한국광학회지
    • /
    • 제16권1호
    • /
    • pp.7-12
    • /
    • 2005
  • 우리는 버퍼 가스가 포함된 Rb 원자 증기셀을 이용하여 $^{87}$ Rb원자 D$_1$전이선에서 원자결맞음에 의한 비선형 광자기 신호를 관측했다. 측정된 가장 좁은 비선형 광자기 신호의 선폭은 2$\pi$${\times}$464 Hz이고, 이 때 비선형 광자기 효과에 의한 미분형 신호의 peak-to-peak 변화에 해당하는 자기장의 변화는 약 1 mGauss로 측정되었다. 이러한 결과는 고감도 자기장 측정을 위한 광자계 연구에 응용될 수 있다.

87Rb D1 전이선에서 원자결맞음을 이용한 비선형 광자기 효과 신호의 특성 (The characteristics of nonlinear magneto-optical effect based on coherent population trapping in the D1 line of Rh atoms)

  • 이림;문한섭;김중복
    • 한국광학회지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2006
  • 우리는 6.7 kPa의 네온 버퍼가스가 포함된 루비듐 증기셀을 이용하여 $^{87}Rb$원자 $D_1$ 전이선에서 레이저의 세기, 증기 셀의 온도, 전이 선에 따른 비선형 광자기 신호(NMOE)의 특성을 조사하였다. 비선형 광자기 신호는 레이저의 세기와 증기셀의 온도가 증가함에 따라 F=2$\to$F'=2 전이선에서는 광자기 신호의 크기와 선폭이 증가하였지만, F=2$\to$F'=1 전이선에서는 확대 없이 신호의 크기만 증가됨으로써 자장 측정 민감도가 향상되는 것을 확인하였으며, 이러한 효과를 자기부준위 사이에서의 원자결맞음 구도의 차이로 설명하였다. 관측된 최적 조건에서 자기장변화에 대한 민감도는 $70pT/\sqrt{Hz}$ 이하로 계산되었다.

AN EXPERIMENTAL STUDY ON AN ELECTROCHEMICAL REDUCTION OF AN OXIDE MIXTURE IN THE ADVANCED SPENT-FUEL CONDITIONING PROCESS

  • Jeong, Sang-Mun;Park, Byung-Heung;Hur, Jin-Mok;Seo, Chung-Seok;Lee, Han-Soo;Song, Kee-Chan
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.183-192
    • /
    • 2010
  • An electrochemical reduction of a mixture of metal oxides was conducted in a LiCl molten salt containing 3 wt% $Li_2O$ at $650^{\circ}C$. The oxide reduction was carried out by applying a current to an electrolysis cell, and the $Li_2O$ concentration was analyzed during each run. The concentration of $Li_2O$ in the electrolyte bulk phase gradually decreases according to Faraday's law due to a slow diffusion of the $O^{2-}$ ions. A hindrance effect of the unreduced metal oxides was observed for the reduction of the uranium oxide. Cs, Sr, and Ba of high heat-load fission products were diffused into and accumulated in the salt phase as predicted with thermodynamic consideration.

구리 ECMP에서 전류밀도가 재료제거에 미치는 영향 (Effect of Current Density on Material Removal in Cu ECMP)

  • 박은정;이현섭;정호빈;정해도
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.79-85
    • /
    • 2015
  • RC delay is a critical issue for achieving high performance of ULSI devices. In order to minimize the RC delay time, we uses the CMP process to introduce high-conductivity Cu and low-k materials on the damascene. The low-k materials are generally soft and fragile, resulting in structure collapse during the conventional high-pressure CMP process. One troubleshooting method is electrochemical mechanical polishing (ECMP) which has the advantages of high removal rate, and low polishing pressure, resulting in a well-polished surface because of high removal rate, low polishing pressure, and well-polished surface, due to the electrochemical acceleration of the copper dissolution. This study analyzes an electrochemical state (active, passive, transpassive state) on a potentiodynamic curve using a three-electrode cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) in a potentiostat to verify an electrochemical removal mechanism. This study also tries to find optimum conditions for ECMP through experimentation. Furthermore, during the low-pressure ECMP process, we investigate the effect of current density on surface roughness and removal rate through anodic oxidation, dissolution, and reaction with a chelating agent. In addition, according to the Faraday’s law, as the current density increases, the amount of oxidized and dissolved copper increases. Finally, we confirm that the surface roughness improves with polishing time, and the current decreases in this process.