• 제목/요약/키워드: Far-Field Method

검색결과 611건 처리시간 0.023초

등가음원법에서의 원거리음원의 위치와 개수의 최적화 연구 (Optimization of the Number and Position of Far Field Sources in Using the Equivalent Source Method)

  • 백광현
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.743-750
    • /
    • 2003
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and nay include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. Typical ESM modeling uses two groups of equivalent source positions. One group includes the first order images of the source inside the enclosure. The Positions of the other group are usually on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal far field sources positions when using the equivalent source method. In general, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study. optimal far field source locations are searched using simulated annealing method for various radii of spheres where far field sources are located. Simulation results showed that optimally located sources with adequate distance away from the enclosure center gave better result than sources with even distribution even with a smaller number of far field sources.

등가소스법을 이용한 실내 음장 모델링에서의 원방 소스 최적화 연구 (A study on the Optimal Far field Source locations in the Acoustic Modelling using Equivalent Source Method)

  • 백광현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.216-221
    • /
    • 2001
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and may include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. In the ESM modelling, some of the equivalent positions are chosen to be the same as the first order images of the source inside the enclosure, some are positioned on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal equivalent source positions, the far field sources. Typically, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study, optimal far field source locations are searched using simulated annealing method and simulation results showed that optimally located sources gave better accuracy even with a smaller number of far field sources.

  • PDF

부유식 해양구조물에 작용하는 시감평균 파표류력에 관한 고찰 (On the Time-Mean Drift Force Acting on a Floating Offshore Structure in Wave)

  • 홍도천
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.8-18
    • /
    • 2002
  • Formulation of the far-field method for the prediction of time-mean hydrodynamic force and moment acting on a 3-D surface-piercing body in waves is reviewed. It is found that the inequality between the weight of the floating body and its buoyancy force permits the replacement of the fluid particles inside the control surface by the fluid particles outside the control surface. Under such circumstances, momentum exchanges across the control surface make the time-mean value of the time rate of the momentum of the fluid inside the control surface non-vanishing. It is a second-order quantity which is hard to calculate by the far-field method. The drift forces and moments on half-immersed ellipsoids are calculated by both the far-field method and the near-field method. The discrepancy between two numerical results is presented and discussed.

Antenna Measurement on Cylindrical Surface in Fresnel Region Using Direct Far-Field Measurement System

  • Oh, Soon-Soo;Kim, Joung-Myoun;Yun, Jae-Hoon
    • ETRI Journal
    • /
    • 제29권2호
    • /
    • pp.135-142
    • /
    • 2007
  • The small anechoic chambers built by many small-/medium-sized companies and universities present difficulties in testing electrically large antennas because the chamber size cannot satisfy the far-field criterion of large antennas. In this paper, a method for Fresnel-region measurement on a cylindrical surface with variation of the measurement height is proposed and verified by both calculations and experiments. We implement the proposed method using a direct far-field measurement system by adding a few supporting structures. The results show good accuracy.

  • PDF

원근 혼합환경에서 간단한 닫힌 형식을 이용한 단일 음원 위치 추정 기법 (Simple closed-form solution for a single source estimation in mixed far-field and near-field conditions)

  • 정태진;이균경
    • 한국음향학회지
    • /
    • 제35권1호
    • /
    • pp.35-41
    • /
    • 2016
  • 본 논문에서는 상관함수와 최소자승 기법에 기반하여 단일 음원의 위치가 원거리 혹은 근거리 모두 가능한 경우, 이에 상관없이 닫힌 형태로 위치를 추정하는 기법을 제안한다. 최근 균일 환영 배열에서 상호상관함수를 이용하여 원거리 단일 음원의 위치를 2차원으로 추정하는 기법이 제안되었으며, 이를 확장하여 근거리 단일 음원의 위치를 3차원으로 추정하는 기법이 제안되었다. 그러나 기존 기법은 음원의 위치가 원거리, 혹은 근거리로 제한된 상황만 다루고 있다. 반면 제안 기법은 먼저 원거리 음원으로 가정하여 거리 독립적으로 방위와 고각을 구하고 이후 거리 추정에서 원거리와 근거리 음원을 구분하여 혼합 환경에 적용가능하다. 시뮬레이션에서는 두 가지 경우 모두에 대해 실험하여 제안 기법의 타당성을 검증하였다.

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION

  • Jeong, Darae;Ha, Taeyoung;Kim, Myoungnyoun;Shin, Jaemin;Yoon, In-Han;Kim, Junseok
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1087-1100
    • /
    • 2014
  • We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

경계 배치법(Boundary Collocation Method)에 의한 근거리 음장 자료로부터 원거리 음장의 예측 ; 최적 측정점 개수의 결정 (Far-Field Sound Field Estimation from Near-Field Sound Field Data Using Boundary Collocation Method ; Decision of Optimum Points of Measurement)

  • 김원호;윤종락
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.31-37
    • /
    • 1999
  • 본 논문은 근거리 음장 측정 자료로부터 원거리 음장 예측을 위한 기술에 대한 것이다. 음원의 음장 분포 특성은 원거리에서 측정된 자료의 해석으로 이루어지는 것이 일반적 방법이나, 음향수조 또는 무향실과 같은 제한된 공간에서는 근거리 영역에서 측정이 이루어지는 경우가 발생한다. 따라서 근거리 영역에서의 측정으로부터 원거리 음장이 예측되어야 한다. 이 경우 음원을 둘러싼 근거리 음장의 측정점수는 원거리 음장 예측치의 정확도와 자료 처리의 계산량과 상관된다. 기존 연구 결과는 최적측정점수는 음원의 kL에 비례하고 음원의 기하학적 형태 또는 지향특성에 따라 kL의 의존성이 다르게 나타난다고 되어 있으나 정확한 기준이 없다. 따라서 본 논문에서는 최적측정지점수에 대한 기준을 유도하기 위해 Helmholtz 적분식과 Green 함수를 근간으로 한 원거리 음장 예측 기술인 경계배치법(Boundary Collocation Method)을 분석하여 최적측정점수는 kL이 증가함에 따라 0.54kL로 수렴한다는 결과를 얻었다. 기존의 연구 결과 보다 최적측정점수를 1/2 정도로 줄였다.

  • PDF

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

부지효과를 고려한 2차원 평면상의 지진응답해석 (Seismic Response Analysis Considering the Site Effect in Two Dimensional Cases)

  • 김민규;임윤묵;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.83-90
    • /
    • 2001
  • The site effects of local geological conditions on seismic ground motion are performed using 2D numerical method. For the analysis, a numerical method far ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. In order to verify the seismic response analysis, the results are compared with those of commercial code. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis of the site effect in 2D problem.

  • PDF