• Title/Summary/Keyword: Falling rate

Search Result 365, Processing Time 0.025 seconds

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

Improvement of the Detection of LOB through Reconstruction of an Internal Model (내부 모델의 재구성에 의한 균형상실 검출성능 개선)

  • Kim, Kwang-Hoon;Park, Jung-Hong;Son, Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.827-832
    • /
    • 2010
  • Many researchers have tried to detect the falling and to reduce the injury associated with falling. Normally the method of detection of a loss of balance is more efficient than that of a compensatory motion in order to predict the falling. The detection algorithm of the loss of balance was composed of three main parts: parts of processing of measured data, construction of an internal model and detection of the loss of balance. The internal model represented a simple dynamic motion balancing with two rear legs of a four-legged chair and was a simplified model of a central nervous system of a person. The internal model was defined by the experimental data obtained within a fixed time interval, and was applied to the detecting algorithm to the end of the experiment without being changed. The balancing motion controlled by the human brain was improved in process of time because of the experience accruing to the brain from controlling sensory organs. In this study a reconstruction method of the internal model was used in order to improve the success rate and the detecting time of the algorithm and was changed with time the same as the brain did. When using the reconstruction method, the success rate and the detecting time were 95 % and 0.729 sec, respectively and those results were improved by about 7.6 % and 0.25 sec in comparison to the results of the paper of Ahmed and Ashton-Miller. The results showed that the proposed reconstruction method of the internal model was efficient to improve the detecting performance of the algorithm.

Wearing Characteristic Evaluation of Hip Protector for Hip Fracture Prevention (고관절 골절 예방을 위한 힙프로텍터 착용특성 평가)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • The Korean Fashion and Textile Research Journal
    • /
    • v.16 no.6
    • /
    • pp.1001-1007
    • /
    • 2014
  • We surveyed the wearing characteristics of hip protectors. The problems of existing hip protectors were identified and the directions for improvement were presented. The evaluation of wearing characteristics was conducted on the 100 elderly women (60 to 85 years) with 5 types of hip protector. The questionnaire was composed of history and characteristics on falling, hip protector acceptance, preference, use characteristics and improvement requirements. The result of wearing characteristic evaluation indicated that 52% of the subject experienced falling in winter. Incidents resulting from falling occurred: outdoors (74.5%), bathroom (10.9%), and kitchen (5.5%). Body parts to be protected were in several areas: 35.6% for lumbar, 26.9% for hip joint, and 15% for hip bone. Participants prefer a belt B type design at a rate of 56.9% because it provided a sense of stability by clinging to the body and upholding the waist. Belt B type was the most appropriate in terms of fit, allowance, mobility, and design except pad thickness. To reduce the risk of hip fracture, hip protector needs to be designed in consideration of user's type of fall and body shape. The pattern and size of a hip protector has to be improved in regards to the amount of discomfort. An objective evaluation is needed for the ergonomic design of a hip protector based on and analysis of 3D body image of the elderly and the shock-absorbing quality of pad.

Rapid Debinding of Low Pressure Injection Molded Parts by Wicking and Subsequent Thermal Pyrolysis (위킹 및 후속 열분해 탈지에 의한 저압 사출제의 가속탈지)

  • 최인묵;김민기;김상우;이해원;송휴섭;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.635-639
    • /
    • 1998
  • When the low pressure injection molded parts are debinded by wicking and subsequent thermal pyrolysis the optimum transition point from wicking to thermal pyrolysis is just after the completion of the constant wicking rate period. Even when the partially debinded parts were heated at 5$^{\circ}C$/min after reaching the 1st falling rate period the debinding defects such as distortion and cracks were not found.

  • PDF

Approximate solutions on the absorption process of an aqueous LiBr falling film : effects of vapor flow (리튬브로마이드 수용액 유하액막의 흡수과정에 대한 근사 해법 : 증기 유동의 영향)

  • Kim, B.J.;Lee, C.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.144-152
    • /
    • 1997
  • Film absorption involves simultaneous heat and mass transfer in the vapor-liquid system. In the present work, the absorption process of water vapor by an aqueous soluton of LiBr flowing inside of the vertical tube was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the heat and mass transfer rate. Particularly the effects of vapor flow conditions on the absorption process were investigated in terms of the vapor Reynolds number. As the vapor Reynolds number increased, the shear stress at the vapor-solution interface also increased. Consequently solution film became thinner at higher vapor flowrate under the co-currentflow condition. Thinner film was capable of higher heat transfer to the wall and leaded to higher absorption rate of the water vapor into the solution film.

  • PDF

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.

Object-Action and Risk-Situation Recognition Using Moment Change and Object Size's Ratio (모멘트 변화와 객체 크기 비율을 이용한 객체 행동 및 위험상황 인식)

  • Kwak, Nae-Joung;Song, Teuk-Seob
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.556-565
    • /
    • 2014
  • This paper proposes a method to track object of real-time video transferred through single web-camera and to recognize risk-situation and human actions. The proposed method recognizes human basic actions that human can do in daily life and finds risk-situation such as faint and falling down to classify usual action and risk-situation. The proposed method models the background, obtains the difference image between input image and the modeled background image, extracts human object from input image, tracts object's motion and recognizes human actions. Tracking object uses the moment information of extracting object and the characteristic of object's recognition is moment's change and ratio of object's size between frames. Actions classified are four actions of walking, waling diagonally, sitting down, standing up among the most actions human do in daily life and suddenly falling down is classified into risk-situation. To test the proposed method, we applied it for eight participants from a video of a web-cam, classify human action and recognize risk-situation. The test result showed more than 97 percent recognition rate for each action and 100 percent recognition rate for risk-situation by the proposed method.

Implementation of Falling Accident Monitoring and Prediction System using Real-time Integrated Sensing Data

  • Bonghyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2987-3002
    • /
    • 2023
  • In 2015, the number of senior citizens aged 65 and over in Korea was 6,662,400, accounting for 13.1% of the total population. Along with these social phenomena, risk information related to the elderly is increasing every year. In particular, a fall accident caused by a fall can cause serious injury to an elderly person, so special attention is required. Therefore, in this paper, we implemented a system that monitors fall accidents and informs them in real time to minimize damage caused by falls. To this end, beacon-based indoor location positioning was performed and biometric information based on an integrated module was collected using various sensors. In other words, a multi-functional sensor integration module was designed based on Arduino to collect and monitor user's temperature, heart rate, and motion data in real time. Finally, through the analysis and prediction of measurement signals from the integrated module, damage from fall accidents can be reduced and rapid emergency treatment is possible. Through this, it is possible to reduce the damage caused by a fall accident, and rapid emergency treatment will be possible. In addition, it is expected to lead a new paradigm of safety systems through expansion and application to socially vulnerable groups.

Drying Characteristics of Filefish Fillet (말쥐치육(肉)의 건조특성(乾燥特性))

  • Lee, Byeong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 1982
  • Constant rate period, falling rate period and diffusion coefficient using filefish fillet as sample during drying in hot air drier were determined under controlled conditions of temperature, humidity and air velocity. Drying rate curve consisted of a short period of constant rate and two stages of falling rate period. When 1 to 3m/see of air velocities were applied, diffusion coefficients were in the range of 1.9130 to $2.6187\;{\times}\;10^{-6}\;\textrm{cm}^2/sec$ at $50^{\circ}C$. 2.4806 to $3.5342\;{\times}\;10^{-6}\;\textrm{cm}^2/sec$ at $60^{\circ}C$ and 4.3405 to $5.3042\;{\times}\;10^{-6}\;\textrm{cm}^2/sec$ at $70^{\circ}C$, respectively. Available lysine content was decreased by 15%. 16% and 20% in the fillet dried at $50^{\circ}C$, $60^{\circ}C$ and $70^{\circ}C$, respectively.

  • PDF