• Title/Summary/Keyword: Fairness Index

Search Result 59, Processing Time 0.025 seconds

Development of Fairness Evaluation Index for the Construction Industry (건설산업의 공정성 평가지수 개발)

  • Lee, Chijoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.16-27
    • /
    • 2022
  • This study analyzed both the legal system regarding fair trade and the types of unfair trade in the construction industry. Then, it derived the factors with which to evaluate the level of fairness. These factors were classified by each type of participant in the construction industry, such as general contractors and subcontractors, and each construction stage, such as bidding, contracting, and construction. The perceived fairness level of factors was analyzed using a survey of 238 employees of general contractors and subcontractors. Next, the study developed a fairness index for the construction industry. The index showed that subcontractors perceived the level of fairness more negatively than general contractors, but both perceived the construction stage of the industry as having the lowest level of fairness. General contractors perceived the bidding and contracting stages as having the highest fairness levels, and subcontractors perceived the contracting stage as having the highest level of fairness. The developed fairness index identified the evaluation factors that need improvement and the fairness level perceived by each type of participant at each stage of construction. The results of this study can contribute to establishing measures that improve the level of fairness in the construction industry.

Efficient MAC Protocol for Achieving Fairness in Wireless Ad-hoc Networks under the DCF (Wireless Ad-hoc 망의 DCF환경에서 Fairness 구현을 위한 효과적인 MAC 프로토콜)

  • 임희선;박승권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.928-936
    • /
    • 2004
  • This paper proposes simple and effective Contention Window (CW) adjusting algorithm to solve the fairness problem of the IEEE 802.11 under the Distributed Coordination Function (DCF). This adjusting algorithm can support variable packet length as well as both RTS/CTS access method and hidden nodes. Simulation results show that fairness problem can be very severe in the original MAC protocol of the wireless network. In case of implement our algorithm, fair sharing was enlarged prominently and the fairness sharing was improved about maximum 30%.

A Study on Control Scheme for Fairness Improvement of Assuared Forwarding Services in Differentiated Service Network (DiffServ 망에서 AF 서비스의 공평성 향상을 위한 제어 기법)

  • Kim, Byun-gon;Jeong, Dong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.649-652
    • /
    • 2015
  • Previous marking policy for the AF service of TCP traffic in the Diffserv network have no sufficient consideration on the effect of RTT and target rate. In this paper, in order to improve fairness Index by the effect RTT difference of TCP traffic, we propose the modified TSW3CDM(Time Sliding Window Three Color Dynamic Marker) based on average transfer rate estimation and the flow state. The proposed algorithm is dynamic marking policy that do allocate band width in proportion to transmission rate. To evaluate the performance of the proposed algorithm, We accomplished a computer simulation using NS-2. From simulation results, the proposed TSW3CDM algorithm improves fairness index by comparison with TSW3CM.

  • PDF

An Energy Efficient Algorithm Based on Clustering Formulation and Scheduling for Proportional Fairness in Wireless Sensor Networks

  • Cheng, Yongbo;You, Xing;Fu, Pengcheng;Wang, Zemei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.559-573
    • /
    • 2016
  • In this paper, we investigate the problem of achieving proportional fairness in hierarchical wireless sensor networks. Combining clustering formulation and scheduling, we maximize total bandwidth utility for proportional fairness while controlling the power consumption to a minimum value. This problem is decomposed into two sub-problems and solved in two stages, which are Clustering Formulation Stage and Scheduling Stage, respectively. The above algorithm, called CSPF_PC, runs in a network formulation sequence. In the Clustering Formulation Stage, we let the sensor nodes join to the cluster head nodes by adjusting transmit power in a greedy strategy; in the Scheduling Stage, the proportional fairness is achieved by scheduling the time-slot resource. Simulation results verify the superior performance of our algorithm over the compared algorithms on fairness index.

Short-term Fairness Analysis of Connection-based Slotted-Aloha

  • Yoora Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.55-62
    • /
    • 2023
  • Slotted-Aloha (S-Aloha) has been widely employed in random access networks owing to its simple implementation in a distributed manner. To enhance the throughput performance of the S-Aloha, connection-based slotted-Aloha (CS-Aloha) has been proposed in recent years. The fundamental principle of the CS-Aloha is to establish a connection with a short-sized request packet before transmitting data packets. Subsequently, the connected node transmits long-sized data packets in a batch of size M. This approach efficiently reduces collisions, resulting in improved throughput compared to the S-Aloha, particularly for a large M. In this paper, we address the short-term fairness of the CS-Aloha, as quantified by Jain's fairness index. Specifically, we evaluate how equitably the CS-Aloha allocatestime slots to all nodes in the network within a finite time interval. Through simulation studies, we identify the impact of system parameters on the short-term fairness of the CS-Aloha and propose an optimal transmission probability to support short-term fairness.

Instantaneous Fairness of TCP in Heterogeneous Traffic Wireless LAN Environments

  • Jung, Young-Jin;Park, Chang Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3753-3771
    • /
    • 2016
  • Increasingly, numerous and various Internet-capable devices are connected in end user networks, such as a home network. Most devices use the combination of TCP and 802.11 DCF as a system platform, but whereas some devices such as a streaming video persistently generate traffic, others such as a motion sensor do so only intermittently with lots of pauses. This study addresses the issue of performance in this heterogeneous traffic wireless LAN environment from the perspective of fairness. First, instantaneous fairness is introduced as a notion to indicate how immediately and how closely a user obtains its fair share, and a new time-based metric is defined as an index. Second, extensive simulation experiments have been made with TCP Reno, Vegas, and Westwood to determine how each TCP congestion control corresponds to the instantaneous fairness. Overall, TCP Vegas yields the best instantaneous fairness because it keeps the queue length shorter than the other TCPs. In the simulations, about 60% of a fair share of the effective user bandwidth is immediately usable in any circumstance. Finally, we introduce two simple strategies for adjusting TCP congestion controls to enhance instantaneous fairness and validate them through simulation experiments.

An Approach to Scheduling Bursty Traffic

  • Farzanegan, Mahmoud Daneshvar;Saidi, Hossein;Mahdavi, Mehdi
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.69-79
    • /
    • 2014
  • The scheduling scheme in packet switching networks is one of the most critical features that can affect the performance of the network. Hence, many scheduling algorithms have been suggested and some indices, such as fairness and latency, have been proposed for the comparison of their performances. While the nature of Internet traffic is bursty, traditional scheduling algorithms try to smooth the traffic and serve the users based on this smoothed traffic. As a result, the fairness index mainly considers this smoothed traffic and the service rate as the main parameter to differentiate among different sessions or flows. This work uses burstiness as a differentiating factor to evaluate scheduling algorithms proposed in the literature. To achieve this goal, a new index that evaluates the performance of a scheduler with bursty traffic is introduced. Additionally, this paper introduces a new scheduler that not only uses arrival rates but also considers burstiness parameters in its scheduling algorithms.

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

A Cluster Based Multi-channel Assignment Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 클러스터 기반 멀티채널 할당 기법)

  • Kim, Young-An
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.880-887
    • /
    • 2011
  • The Wireless Mesh Network(WMN) technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield. Therefore, WMN is frequently used to satisfy needs for internet connection and active studies and research on them are in progress. However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment. Such phenomenon might cause an issue in fairness index. In order to resolve this issue, we proposed a Cluster Based Multi-channel Assignment Scheme(CB-MAS) for adaptive tactical wireless mesh network. In the CB-MAS, the communication between the Cluster-Head(CH) and cluster number nodes uses a channel has no effect on channels being used by the inter-CH links. Therefore, the CB-MAS can minimize the interference within multi-channel environments. Our Simulation results showed that CB-MAS achieves improved the throughput and fairness index in WMN.

Throughput-based fair bandwidth allocation in OBS networks

  • Le, Van Hoa;Vo, Viet Minh Nhat;Le, Manh Thanh
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.624-633
    • /
    • 2018
  • Fair bandwidth allocation (FBA) has been studied in optical burst switching (OBS) networks, with the main idea being to map the max-min fairness in traditional IP networks to the fair-loss probability in OBS networks. This approach has proven to be fair in terms of the bandwidth allocation for differential connections, but the use of the ErlangB formula to calculate the theoretical loss probability has made this approach applicable only to Poisson flows. Furthermore, it is necessary to have a reasonable fairness measure to evaluate FBA models. This article proposes an approach involving throughput-based-FBA, called TFBA, and recommends a new fairness measure that is based on the ratio of the actual throughput to the allocated bandwidth. An analytical model for the performance of the output link with TFBA is also proposed.