• 제목/요약/키워드: Failure wave

검색결과 311건 처리시간 0.024초

수중 잠제구조물의 파랑 전달율과 안정성 및 기능성 평가 (Estimation on the Wave Transmission and Stability/Function Characteristics of the Submerged Rubble-Mound Breakwater)

  • 김용우;윤한삼;류청로;손병규
    • 한국수산과학회지
    • /
    • 제36권5호
    • /
    • pp.528-534
    • /
    • 2003
  • The 2-D hydraulic experimental results for the submerged rubble-mound structure, we have been concerned with the slability/function characteristics of the structures by the effects of wave force, scour/deposition at the toe and the wave transmission ratio at the lee-side sea. So, to investigate the variation characteristics of the wave transmission ratio which depended on a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width were obviously presented. In summary, the results lead us to the conclusion that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is higher than about 4 times the degree at the efficiency than the that of crest width. The destruction of the covering block at the crest generated at the region which was located between the maximum and minimum damage curve, and it's maximum damage/failure station from the toe of the structure was $0.2\;L_s.$ As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When the maximum scour depth happened, the destruction of the covering block which was located at the toe generated at the front of the submerged rubble-mound breakwater. Finally, it was found from the results that the optimization of the structure may be obtained by the efficient decision of the submergence depth and crest width in the permissible range of the wave transmission ratio.

월파에 대한 경사식 해안 구조물의 신뢰성 해석 (Reliability Analysis of Sloped Coastal Structures against Random Wave Overtopping)

  • 이철응
    • 한국해안해양공학회지
    • /
    • 제15권4호
    • /
    • pp.214-223
    • /
    • 2003
  • 신뢰성 기법을 도입하여 경사식 해안 구조물에 발생하는 월파현상을 해석하였다. 월파와 관련된 많은 변수를 고려할 수 있을 뿐만 아니라 예측능력이 우수하다고 판단되는 경험식을 이용하여 신뢰함수가 유도되었다. 일반적으로 인정되는 범위내에서 설정된 확률변수의 통계적 특성과 분포함수를 이용하여 허용 월파량을 초과하는 파괴확률이 무차원 천단고의 함수로 산정되었다. 피복재의 종류와 구조물 전면의 경사에 따른 파괴확률의 차이도 해석되었다 또한 상치 콘크리트 전면에 거치된 피복재의 천단폭 변화에 대하여도 해석하였다. 마지막으로 각 확률변수의 불확실성에 따른 민감도 분석이 수행되었다. 월파와 관련된 제반 특성들이 잘 묘사되었을 뿐만 아니라 결정론적 설계법에서는 규명할 수 없는 허용 월파량을 초과하는 파괴확률들이 정량적으로 산정 되었다. 따라서 천단고를 결정할 때 확률적인 개념을 가미함으로서 설계의 효율성을 높일 수 있다.

충격파압에 의한 콘크리트 방파제의 거동 예측 (Response Prediction of Concrete Breakwater In Wave Impact Pressure)

  • 양종석;김성훈;김동완;경민수;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.197-202
    • /
    • 2002
  • The most common failure of breakwater comes from impact wave pressure generated by intense storms. This impact pressure is 10 folds greater than the pressure generated by normal waves. Therefore, the precise knowledge of magnitude of impact wave pressure applied on breakwater and its structural response is crucial for the economical and safe design. However, presently, a precise analysis of breakwater is restricted by insufficient and incorrect consideration of the effect of soil-structure Interaction. 3 major research areas included in this study are (1) theoretical analysis of impact wave pressure, (2) selection of breakwater structure model (3) soil-structure interaction analysis using limit analysis computer program. Based on this analysis, predicted response of concrete breakwater and probable failure location under wave impact pressure are determined.

  • PDF

Stress wave propagation in composite materials

  • Shen, Siyuan J.;Pfister, Jens C.;Lee, James D.
    • Structural Engineering and Mechanics
    • /
    • 제11권4호
    • /
    • pp.407-422
    • /
    • 2001
  • The linear constitutive relations and the failure criteria of composite materials made of thermoviscoelastic solids are presented. The post-failure material behavior is proposed and the dynamic finite element equations are formulated. However, a nonlinear term is kept in the energy equation because it represents the effect of the second law of thermodynamics. A general purpose nonlinear three-dimensional dynamic finite element program COMPASS is upgraded and employed in this work to investigate the interdependence among stress wave propagation, stress concentration, failure progression and temperature elevation in composite materials. The consequence of truthfully incorporating the second law of thermodynamics is clearly observed: it will always cause temperature rise if there exists a dynamic mechanical process.

잠제의 전달율과 안정성에 관한 실험적 연구 (Experimental study on transmission and stability of submerged breakwater)

  • 김용우;윤한삼;김홍진;류청로;손병규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.213-219
    • /
    • 2003
  • As the 2-D hydraulic experimental results for the submerged rubble-mound structure, we have concerned with their stability/function characteristics of structures by the effects of wave force, scour/deposition at the toe and wave transmission ratio at the lee-side sea. And as to investigate the variation characteristics of wave transmission ratio which depended to a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width obviously presented. In summary, there results lead us to the conclusions that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is high about 4 time degrees at the efficiency than the that of crest width. The destruction of covering block at the crest generated at the region which located between maximum damage curve, it maximum damage/failure station from the toe of the structure were 0.2L. As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When maximum scour depth happened. The destruction of covering block which located at the toe generated at the front slope destruction. Finally, it was found from the results that the optimization of structure may be obtained by the efficiently decision of the submergence depth and crest width in the permissible range of wave transmission ratio.

  • PDF

미소파괴음을 이용한 절토사면계측 (Rock Slope Monitoring using Acoustic Emission)

  • 장현익;김진광;김찬우;김경석;천대성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.743-748
    • /
    • 2010
  • The stability forecasting of rock slope is more difficult than soil slope because catching the sign of failure in monitoring is not easy and deformation of the rock is small in failure process. But in the rock slope, there is small deformation like crack propagation in rock itself and it accumulates gradually in failure process. If it is possible to detect the small change in the rock slope, we can know the failure time exactly. Because the individual signal is gathered in the acoustic emission monitoring, it is possible to monitoring the slope if many sound signal is accumulated. Detection test of acoustic emission was performed. Uniaxial, two types of bending test, and two plane shear test were done with various cement paste sample. Wave propagation velocity of uniaxial test sample was increased with curing time. Wave Analysis give us the result that there is a AE sign signal before the failure, the AE count is suddenly increased. And frequency level 125kHz before failure is changed to level 200-250kHz after failure. In two plane shear test we can catch the AE signal and can know the failure type from wave shape. Monitoring test site is tunnel slope in Hongcheon but special signal is not collected.

  • PDF

Effect of glide path preparation with PathFile and ProGlider on the cyclic fatigue resistance of WaveOne nickel-titanium files

  • Uslu, Gulsah;Inan, Ugur
    • Restorative Dentistry and Endodontics
    • /
    • 제44권2호
    • /
    • pp.22.1-22.8
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the effect of glide path preparation with PathFile and ProGlider nickel-titanium (NiTi) files on the cyclic fatigue resistance of WaveOne NiTi files. Materials and Methods: Forty-four WaveOne Primary files were used and divided into four groups (n = 11). In the first group (0 WaveOne), the WaveOne Primary files served as a control group and were not used on acrylic blocks. In the 1 WaveOne Group, acrylic blocks were prepared using only WaveOne Primary files, and in the PF+WaveOne group and PG+WaveOne groups, acrylic blocks were first prepared with PathFile or ProGlider NiTi files, respectively, followed by the use of WaveOne Primary files. All the WaveOne Primary files were then subjected to cyclic fatigue testing. The number of cycles to failure was calculated and the data were statistically analyzed using one-way analysis of variance (ANOVA) and the Tukey honest significant difference multiple-comparison test at a 5% significance level. Results: The highest number of cycles to failure was found in the control group, and the lowest numbers were found in the 1 WaveOne group and the PF+WaveOne group. Significant differences were found among the 1 WaveOne, PF+WaveOne, and control groups (p < 0.05). No statistically significant differences were found between the PG+WaveOne group and the other three groups (p > 0.05). Conclusion: Glide path preparation with NiTi rotary files did not affect the cyclic fatigue resistance of WaveOne Primary files used on acrylic blocks.

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

사석방파제 toe부에서의 세굴특성에 관한 연구 (Scouring Characteristics at the Toe of the Rubble Mound Breakwater)

  • 윤한삼;남인식;류청로
    • 한국해양공학회지
    • /
    • 제16권4호
    • /
    • pp.7-12
    • /
    • 2002
  • This study is aimed to find the scouring mechanism at the toe of rubble mound structures. To investigate the characteristics of scouring in front of the structure, experiments were performed with regular waves in a 2-D flume. The results of this study are as follows. 1) It can be said the characteristics of incident wave causes rolling and sliding of armour block. The difference of wave pressure on the slope, internal flow as well as settlement of armour block due to the weight cause scouring. 2) It is observed that scouring depth at the toe increased when wave height or period increased. The location of ultimate scouring and deposition depth moved seaward when wave period increased. 3) The failure of rubble mound structure was caused by waves or scouring. Failure by erosion increased with high waves and long waves. 4) Using surf-similarity parameter including characteristics of incident waves and structure, scouring and deposition pattern were found and their limit was formulated.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.