• Title/Summary/Keyword: Failure strength analysis

Search Result 1,491, Processing Time 0.024 seconds

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Failure Behavior and Tension Stiffening of RC Tension Members (철근콘크리트 인장부재의 인장강성 및 파괴거동에 관한 연구)

  • 박제선;이봉학;윤경구;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.737-742
    • /
    • 1998
  • The tension stiffening effect is defined as the increase in stiffness in reinforced concrete member due to the stiffness provided by concrete between cracks. If this is disregarded in analysis of reinforced concrete members, especially at the level of service loads, member stiffnesses may be underestimated considerably. This paper presents on the failure behavior and tension stiffening of RC tension test with main variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship by ACI code and the proposed by Collins & Mitchell. In summary, the effect of tension stiffening decrease rapidly as the rebar diameter increase, rebar strength increase, and concrete strength increase. The effect of tension stiffening on RC member is the biggest near the behavior of concrete cracking and decrease as the load close to the breaking point. Thus, the tension stiffening should be considered for the precise analysis near the load of concrete cracking.

  • PDF

Energy and strength in brittle materials

  • Speranzini, Emanuela
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • A study concerning the strength of brittle materials is presented in this paper. The failure behavior was investigated examining the plane of the crack after the failure and comparing the results obtained with those deriving from the fracture mechanics theory. Although the proposed methods are valid in general for brittle materials, the experiment was performed on glass because the results are more significant for this. Glass elements of various sizes and different edge finishes were subjected to bending tests until collapsing. The bending results were studied in terms of failure load and energy dissipation, and the fracture surfaces were examined by means of microscopic analysis, in which the depth of the flaw and the mirror radius of the fracture were measured and the strength was calculated. These results agreed with those obtained from the fracture mechanics analysis.

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

Life Prediction by Lethargy Coefficient under Dynamic Load (동적인장하중시 무기력상수에 의한 수명 예측)

  • Kwon, S.J.;Song, J.H.;Kang, H.Y.;Yang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.91-98
    • /
    • 1997
  • Because of a complicated behavior of fatigue in mechanical structures, the analysis of fatigue is in need of much researches on life prediction. A method is developed for the dynamic tensile strength analysis by simple tensile test, which is for the failure life prediction by lethargy coefficient of various materials. Then it is programed to analyze the failure life prediction of mechanical system by virtue of fracture. Thus the dynamic tensile strength analysis is performed to evaluate life parameters as a numerical example, using the developed method.

  • PDF

A Method of Measuring Wood Failure Percentage of Wood Specimens Bonded with Melamine-Urea-Formaldehyde Resins Using I mage Analysis

  • KIM, Minseok;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.274-282
    • /
    • 2021
  • Transparent and colorless melamine-urea-formaldehyde (MUF) resins make it difficult to identify the area of wood failure percentage (WFP) in the fracture surface of bonded wood specimens. Therefore, in this study, we develop a method of measuring WFP after the adhesion strength measurement of MUF resins under shear stress. The fractured wood surface of b lock shear strength (BSS) specimens bonded with cold-setting MUF resins at three melamine contents (20%, 30%, and 40%) was marked black, and then, WFP was accurately measured via image analysis. WFP values measured using this method consistently increased with BSS as the melamine content increased, showing the reliability of this new method. The results suggested that this new method is useful and reliable for measuring the WFP of the fracture surface of wood specimens bonded with colorless adhesives such as urea-formaldehyde, MUF, and melamine-formaldehyde resins.

An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens (점용접시편의 극한하중과 피로특성에 관한 실험적 고찰)

  • Lee, Hyeong-Il;Kim, Nam-Ho;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

Evaluation of Deformation and Strength of Wall Thinne Pipes by Finite Element Analysis (감육배관의 유한요소해석에 의한 변형 및 강도 평가)

  • NAM KI-WOO;AHN SEOK-HWAN;LEE SOO-SIG;KIM JIN-WOOK;YOON JA-MUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.65-70
    • /
    • 2005
  • Fracture behavior and pipe strength are very important to the integrity of energy plants, ocean structures, and so forth. The pipes of energy plants and ocean structures are subject to local wall thinning, resulting from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping systems have been the focus of many studies. In this paper, the elasto-plastic analysis is performed by FE code ANSYS on straight pipes with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior, using FE analysis. Also, the effect of the axial strain on deformations and failure modes was estimated by FE analysis.

Prediction of Laminate Composite Strength Using Probabilistic Approach (확률분포를 이용한 복합재료의 강도예측)

  • 조영준;강태진;이경우
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2000
  • A numerical approach for predicting the ultimate strength of laminate composites has been studied using the Weibull distribution of the strengths of lamina plies. The probabilistic initial failure strengths of laminates were calculated using Tsai-Hill failure criterion. The ultimate strength of the laminate composites has been predicted using progressive failure analysis. The experimental results show that the strength prediction based on the Weibull distribution of ply strength reasonably agrees well with the experimentals better than equal strength assumption.

  • PDF

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.