• Title/Summary/Keyword: Failure mode effect analysis

Search Result 311, Processing Time 0.033 seconds

Development of Implementation Procedure for Reliability Centred Maintenance with Causing Analysis (원인분석을 통한 신뢰성 중심의 유지보수 시스템 절차 개발)

  • Lee, Hern-Chang;Choi, Min-Hong;Lim, Dong-Ho;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.16-20
    • /
    • 2017
  • Current maintenance system are unable to suggest solid basis of maintenance for roating and static equipment. When a filure occurs, replacement or repair without proper process of failure cause analysis would often result in even greater risk. Therefore in this study, a procedure of Reliability Centred Maintenance is develped in order to perform maintenance in preventive mainer (PM), and to effectively manage risk of any equipment based on failure types and respective rates of failure. Ultimately an equipment with higher risk will be monitored which will lead to effectively prevent and manage any major accident.

Systems Engineering approach to Reliability Centered Maintenance of Containment Spray Pump (시스템즈 엔지니어링 기법을 이용한 격납용기 살수펌프의 신뢰기반 정비기법 도입 연구)

  • Ohaga, Eric Owino;Lee, Yong-Kwan;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.

A Study on Product Liability Response System of Chemical Products by Using Failure Mode and Effect Analysis (FMEA기법을 이용한 화학제품의 PL 대응체계 연구)

  • Ko J. W.;Yoo J. H.;Kim D. H
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.30-35
    • /
    • 2003
  • Product liability(PL) law imposes the liability on manufacturer or wholesaler when the product defects cause harm to consumers of the products or any other parties in their lives, bodies, or properties. In Korea, the law of product liability was enforced in July 2002. In this study the Product Liability Response System of chemical products was developed by using Failure Mode and Effect Analysis(FMEA). For a case study peformed for N,N-Dimethylethylamine. First, product information was gathered through Material Safety Data Sheet(MSDS)and which considered as an instruction manual of chemical product. And an effect caused by product defects is analyzed by FMEA to get Risk Priority Number(RPN) which is calculated by multiplying of severity, occurrence, and detection of the defects. Then hazard was estimated quantitatively by RPN.

  • PDF

Practical Criteria for Process FMEA (현실적 공정 FMEA 평가기준 개발)

  • Kim, T.H.;Jang, Joong-Soon;Lee, E.Y.
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.123-135
    • /
    • 2010
  • Failure mode and effects analysis (FMEA) is a widely used technique to assess or to improve reliability of products or processes at early stage of development. Traditionally, the prioritization of failures for corrective actions is performed by evaluating risk priority numbers (RPN). In practice, due to insufficient evaluation criteria specific to related products and processes, RPN is not always evaluated properly. This paper reestablishes an effective methodology for prioritization of failure modes in FMEA procedure. Revised evaluation criteria of RPN are devised and a refined FMEA sheet is introduced. To verify the proposed methodology, it is applied to inspection processes of PCB products.

Scenario Planning and Risk Failure Mode Effect and Analysis (RFMEA) based Management

  • Paul, Virendra Kumar;Basu, Chaitali
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.24-29
    • /
    • 2016
  • This paper elaborates the significance of scenario planning in risk management, and presents an integrated approach which takes into account the 'Risk Events' derived from scenario planning for risk prioritisation. This research integrates scenario planning with Risk Failure Mode and Effect Analysis (RFMEA) through examples from construction litigations of project schedule and cost overrun cases as a simplified approach to project risk management. The proposed methodology incorporates scenarios developed from realistic events of dispute and arbitration cases from construction projects, and thereby increasing potential to foresee risks and their effects well in advance. The results from this methodology shall be validated against outcome of survey study conducted by KPMG-PMI (2013) on project schedule and cost overruns that was based on Ministry of Statistics and Programme Implementation (MoSPI) Project Monitoring data for 2012-13.

Noise Reduction of a Small D/C Motor Using 6 Sigma Process (6 시그마 프로세스를 이용한 소형 직류 모터의 소음 절감)

  • 차원준;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.532-538
    • /
    • 2003
  • This paper studies on the noise reduction for a small automobile DC Motor (a window motor) using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the DC motor at the production line. In the measurement step in 6 sigma process. the FMEA(failure mode effect analysis) were used for the detection of noise sources. The application of 6 sigma Process gave not only the improving method for the quality of the DC motor but also the confidence of improvement Itself since it was done on the basis of the test results for a number of DC motors at the production line. Consequently the 6 sigma process was proved very effective for the noise reduction at the production line.

A Study on the Reliability and Maintainability Analysis Process for Aircraft Hydraulic System (항공기용 유압 시스템 신뢰도 및 정비도 분석 프로세스 고찰)

  • Han, ChangHwan;Kim, KeunBae
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.105-112
    • /
    • 2016
  • An aircraft must be designed to minimize system failure rate for obtaining the aircraft safety, because the aircraft system failure causes a fatal accident. The safety of the aircraft system can be predicted by analyzing availability, reliability, and maintainability of the system. In this study, the reliability and the maintainability of the hydraulic system are analysed except the availability, and therefore the reliability and the maintainability analysis process and the results are presented for a helicopter hydraulic system. For prediction of the system reliability, the failure rate model presented in MIL-HDBK-217F is used, and MTBF is calculated by using the Part Stress Analysis Prediction and quality/temperature/environmental factors described in NPRD-95 and MIL-HDBK-338B. The maintainability is predicted by FMECA(Failure Mode, Effect & Criticality Analysis) based on MIL-STD-1629A.

Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System (샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

THE EFFECT OF REMOVAL OF RESIDUAL PEROXIDE ON THE SHEAR BOND STRENGTH AND THE FRACTURE MODE OF COMPOSITE RESIN-ENAMEL AFTER TOOTH BLEACHING (생활치 표백술 후 수종의 자유 산소기 제거제 처리가 복합 레진-법랑질 전단 접착 강도 및 파절 양상에 미치는 영향)

  • 임경란;금기연;김애리;장수미
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.399-408
    • /
    • 2001
  • Tooth bleaching has been prevailing recently for its ability to recover the color and shape of natural teeth without reduction of tooth material. However, it has been reported that bleaching procedure adversely affects the adhesive bond strength of composite resin to tooth. At the same time the bond strength was reported to be regained by application of some chemical agents. The purpose of this in vitro study was to investigate the effect of the removal of residual peroxide on the composite- enamel adhesion and also evaluated fracture mode between resin and enamel after bleaching. Sixty extracted human anterior and premolars teeth were divided into 5 groups and bleached by combined technique using of office bleaching with 35 % hydrogen peroxide and matrix bleaching with 10% carbamide peroxide for 4 weeks. After bleaching, the labial surfaces of each tooth were treated with catalase, 70% ethyl alcohol, distilled water and filled with composite resin. Shear bond strength was tested and the fractured surfaces were also examined with SEM. Analysis revealed significantly higher bond strength values. (p<0.05) for catalase-treated specimens, but water-treated specimens showed reduction of bond strength, alcohol- treated specimens had medium value between the two groups(p<0.05). The fracture mode was shown that the catalase group and the alcohol group had cohesive failure but the water sprayed group had adhesive failure. It was concluded that the peroxide residues in tooth after bleaching seems to be removed by gradual diffusion and the free radical oxygen from peroxide prevents polymerization by combining catalyst in the resin monomer. Therefore it may be possible to eliminate the adverse effect on the adhesion of composite resin to enamel after bleaching by using water displacement solution or dentin bonding agent including it for effective removal of residual peroxide.

  • PDF

An Analysis of Critical Management Factors for Construction Failure on the Apartment Structural Framework using FMEA (FMEA 기법을 활용한 공동주택 골조공사의 건설실패 핵심관리요인 분석)

  • Oh, Chi-Don;Park, Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.78-88
    • /
    • 2012
  • Previous construction failure researches were focused on the utilization plan based on failure information and development of failure classification. However, it has limitation to set up the plan for prevention of construction failure due to the lack of the number of on-site staffs. In order to prevent effectively construction failure, a prevention plan should be established through quantitative evaluation of failure causes. The purpose of this study is to suggest the assessment method for selection Critical Management Factor(CMF) and to analyze the CMF on the apartment structural framework using FMEA(Failure Mode and Effective Analysis) which is one of the methods of quantitative evaluation. The element of risk evaluation separated degree of failure risk and prevention respectively. The assessment method for selection of CMF can be utilized for planning proactive solutions on the failure, and it can be also selected critical factors about each project phases, type of facility and construction work.