ISSN 1738-480X (Print) ISSN 2288-3592 (Online) Journal of the Korea Society of Systems Engineering vol.9, No.1: 65p~84p, June 2013

## 시스템즈 엔지니어링 기법을 이용한 격납용기 살수펌프의 신뢰기반 정비기법 도입 연구

Ohaga Eric Owino, 이용관, 정재천 한국전력국제원자력대학원대학교

## Systems Engineering approach to Reliability Centered Maintenance of Containment Spray Pump

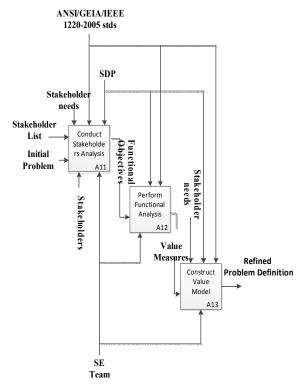
Ohaga Eric Owino, Lee Yong-Kwan, Jung Jae Cheon KEPCO International Nuclear Graduate School

**Abstract** : This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.

*Key Words* : Reliability centered maintenance, Systems engineering, Value modeling, Failure Mode Criticality and Effect analysis.\*

<sup>\*</sup> corresponding author : JC Jung, KINGS, jcjung@kings.ac.kr

<sup>\*</sup> This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non -Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited


#### 1. Introduction

Improvement of safety related systems at a nuclear power plant has been one of the main concerns of the utility and regulatory body through nuclear power plant operation to achieve high safety levels in the event of design basis accidents. In order to maintain high reliability and availability of such components, a careful choice of maintenance There are many strategy is desirable. maintenance strategies that have been used to improve the health of assets in various industries. One such maintenance strategy is reliability centered maintenance (RCM). RCM has its roots in the airline industry where it been used to tackle maintenance has challenges for over 30 years now [2]. The RCM is now finding its way towards the nuclear industries and has been used mainly in normally operating systems [3].

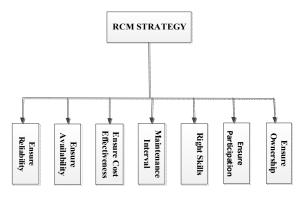
However many standby systems have not had much of the RCM application in the nuclear industry despite their importance to safety. The containment spray system is one such safety system that is rarely used during normal operation and neglected by the maintenance personnel because of its location. It is against this background that systems engineering approach is introduced to effectively address the challenges associated with the traditional strategy. This paper introduces the systems engineering process by defining the problem, needs analysis, concept development, trade off analysis and selection of the best maintenance strategy for the containment spray pump.

#### 2. Problem definition

System decision making process assists stakeholders define their problem correctly before attempting to develop solutions. The functions of safety related components should be maintained so that in the event of design basis accidents, the provision of the mitigating functions would be assured. In order to clearly define the problem statement of this project, stakeholder analysis, functional analysis and value modeling are performed using IDEFO level 1shown in figure 1.[4].



[Figure 1] IDEF0 Level 1 diagram for Problem definition


#### 2.1 Stakeholders' research and analysis

<Table1> Stakeholders analysis

| Technique  | Ideal<br>Stakeholder                                                | Execution                           |  |
|------------|---------------------------------------------------------------------|-------------------------------------|--|
| Interviews | Managers                                                            | Conversation<br>with the<br>leaders |  |
| Surveys    | PRA experts,<br>Maintenance<br>Engineers,<br>Operation<br>Engineers | Survey<br>Questionnaires            |  |

Table 1 shows stakeholders analysis for the RCM application in the nuclear power plant. The needs of the stakeholders are solicited by using interviews and surveys. Interview technique is applied to the top management because it is more convenient to collect more information from this cadre of people using the interview technique. Survey technique is applied on the operations, maintenance, and probabilistic safety assessment staff because of large number and the information required is technical.

#### 2.2 Value hierarchy



[Figure 2] Value Hierarchy for Maintenance Strategy

Figure 2 shows the attributes necessary for the implementation of the RCM strategy. These value measures are defined by the stakeholders as the most important needs that should be addressed in the maintenance strategy implementation.

#### 2.3 Value modeling

The weights are allocated to value measures by the stakeholders in order of their importance as shown in table 2.

| <table 2=""></table> | Swing | weight | matrix   | for | effective | RCM |
|----------------------|-------|--------|----------|-----|-----------|-----|
|                      |       | implem | entatior | ۱   |           |     |

|           |        | Level of imp              | ortance of th          | e value measure            |
|-----------|--------|---------------------------|------------------------|----------------------------|
| Μ         |        | High                      | Medium                 | Low                        |
| Measure r | High   | Reliability<br>[95] [A]   | Skills<br>[85] [B2]    | Communication<br>[65] [C3] |
| range     | Medium | Availability<br>[90] [B1] | Ownership<br>[75] [C2] | Participation<br>[50] [D2] |

Allocation of weights in table 2 is applied using the following constraints;

A> all other cells
B1> C2, D2
B2> C2, C3, D2
C2> D2
C3> D2

| <table 3=""></table> | Global | weights  | of   | the  | value  | measures | for | the |
|----------------------|--------|----------|------|------|--------|----------|-----|-----|
|                      | effec  | ctive RC | M ir | mple | ementa | ation    |     |     |

| No | Value Measures | Swing<br>Weight | Measure<br>Global<br>Weight |
|----|----------------|-----------------|-----------------------------|
| 1  | Reliability    | 95              | 0.2065                      |
| 2  | Availability   | 90              | 0.1957                      |
| 3  | Skills         | 85              | 0.1849                      |
| 4  | Ownership      | 75              | 0.1630                      |
| 5  | Communication  | 65              | 0.1413                      |
| 6  | Participation  | 50              | 0.1087                      |
|    | TOTAL          | 460             | 1                           |

Table 3 illustrates how the global weight is obtained, by dividing the individual value measure's weights by the total swing weight.

# 2.4 Sensitivity Analysis on Value Measures using chi-square method.

This analysis is used to verify the objectivity of the values allocated by the respondents to the importance measures (reliability, availability, skills etc.). Chi square tests any statistical hypothesis in which the sampling distribution of the test statistic, is a chi-squared distribution when the null hypothesis (Ho) is true. In this computation the null hypothesis assumes the survey results to be correct. A confidence level of 95% is chosen. This null hypothesis (Ho), is what the chi-square test attempts to prove.

| <table 4=""></table> | Observed | values | from | survey | feedback |
|----------------------|----------|--------|------|--------|----------|
|----------------------|----------|--------|------|--------|----------|

|           |        | Level of importance of the value measure |                  |                      |  |  |  |
|-----------|--------|------------------------------------------|------------------|----------------------|--|--|--|
| Z         |        | High                                     | Medium           | Low                  |  |  |  |
| Measure r | High   | Reliability<br>[16]                      | Skills<br>[7]    | Communication<br>[9] |  |  |  |
| range     | Medium | Availability<br>[11]                     | Ownership<br>[4] | Participation<br>[3] |  |  |  |

The results of the stakeholders' survey are illustrated in table 4. The observed results show that 16 respondents classify reliability as high-high, 7 respondents classify skills as high-medium, communication (high-low), availability (medium-high), ownership (medium-medium) and participation(medium-low).

The target population of stakeholders is 50. The respondents are divided into two samples for ease of analysis. Sample 1 represents the respondents whose measure range is high while sample 2 represent respondents with medium measure range.

<Table 5> Observed values for sample 1

| Me      |      | Level of importance of the value measure |               |                      |  |  |  |  |
|---------|------|------------------------------------------|---------------|----------------------|--|--|--|--|
| Measure |      | High                                     | Medium        | Low                  |  |  |  |  |
| e range | High | Reliability<br>[16]                      | Skills<br>[7] | Communication<br>[9] |  |  |  |  |

Table 5 shows sample' s 1 observed results from a population of 32 (16+7+9) respondents which corresponds to the high measure range.

<Table 6> Observed values for sample 2

| Me      |        | Level of importance of the value mea |                  |                      |  |  |  |  |
|---------|--------|--------------------------------------|------------------|----------------------|--|--|--|--|
| Measure |        | High                                 | Medium           | Low                  |  |  |  |  |
| e range | Medium | availability<br>[11]                 | Ownership<br>[4] | Participation<br>[3] |  |  |  |  |

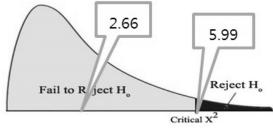
Table 6 shows the sample's 2 observed results from a population of 18 respondents. This outcome corresponds to the medium measure range.

<Table 7> Chi square calculation

|                       | High       | Medium     | Low        |            | High      | Medium            | Low       |
|-----------------------|------------|------------|------------|------------|-----------|-------------------|-----------|
| High                  | 16         | 7          | 9          | Medium     | 11        | 4                 | 3         |
| [observed]<br>(0)     |            |            |            | [Observed] |           |                   |           |
| Expected              | (0.5) (32) | (0.3) (32) | (0.2) (32) | Expected   | (0.5)(18) | (0.3)(18)         | (0.2)(18) |
| value(E)              | =16        | =9.6       | =6.4       | value(E)   | =9        | =5.4              | =3.6      |
| (O-E)                 | 0          | -2.6       | 2.6        |            | 2         | -1.4              | -0.6      |
| (O-E) <sup>2</sup>    | 0          | 6.76       | 6.76       |            | 4         | 1.96              | 0.36      |
| (O-E) <sup>2</sup> /E | 0          | 0.704      | 1.056      |            | 0.444     | 0.362             | 0.1       |
| $\Sigma (O-E)^2/E$    |            | 0+0.7      | 04+1.056+  | 0.444+0.36 | 2=0.1=2.6 | 66=X <sup>2</sup> |           |

The expected value measures are divided into 50% for high level of importance, 30% for medium level of importance and 20% for low level of importance. These weights are used in the computation of the expected value E by multiplying expected value measure by two samples as shown in the second row of table 7. Observed value O is derived from tables 5 and 6. Using chi square formula in the last row of table 7, a Chi- Square statistic = X2= 2.666 is obtained.

In order to use the Chi square distribution table, degree of freedom is calculated using the following formula ;


Degree of freedom = df = (Row-1)(Column 1) = (2-1) (3-1) =2

Where row and column refer to 2x3 matrix as shown in table 4 and the confidence level is 95% which translates to  $\alpha = 0.05$ .

#### <Table 8> Chi-square distribution table

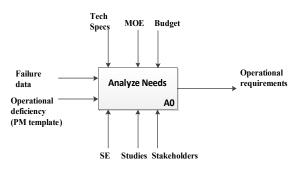
| α =   | 0.995      | 0.99     | 0.98     | 0.975    | 0.95    | 0.90   | 0.80   | 0.20  | 0.10  | 0.05   |
|-------|------------|----------|----------|----------|---------|--------|--------|-------|-------|--------|
| V = I | 0.00002115 | 0.000157 | 0.000628 | 0.000982 | 0.00393 | 0.0158 | 0.0642 | 1.642 | 2.706 | 3.841  |
| 2     | 0.0100     | 0.0201   | 0.0404   | 0.0506   | 0.103   | 0.211  | 0.446  | 3.219 | 4.605 | 5.991  |
| 3     | 0.0717     | 0.115    | 0.185    | 0.216    | 0.352   | 0.584  | 1.005  | 4.642 | 6.251 | 7.815  |
| 4     | 0.207      | 0.297    | 0.429    | 0.484    | 0.711   | 1.064  | 1.649  | 5.989 | 7.779 | 9.488  |
| 5     | 0.412      | 0.554    | 0.752    | 0.831    | 1.145   | 1.610  | 2.343  | 7.289 | 9.236 | 11.070 |

Using the Chi-Square Distribution Table 8 and the values of freedom and confidence level, a critical value = Xc2 = 5.99 is obtained.



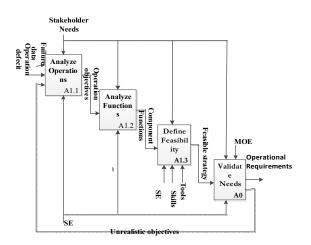
<Figure 3> Chi- square curve

Figure 3 shows a chi-square curve with the chi-square value 2.66 lying on the acceptance area. This result verifies the data as goodness of fit and the null hypothesis proved correct. This is the justification for the weight allocation as shown in table 2.


#### 2.5 Refined problem definition

From the analysis above, the maintenance strategy for the safety related components should provide reliability performance criterion of 1 failure in 2 refueling periods [3yrs] and availability of more than 97.5% while ensuring Plant safety. The maintenance strategy should be cost effective and develop required skills for its implementation. The implementation process must ensure participation and ownership by key stakeholders (Utility).

#### 3. Concept development


#### 3.1 Needs analysis

The needs analysis is a phase that is responsible for the determination of the need or desire for a new system. In this study the application of reliability centered maintenance strategy on containment spray pump in a nuclear power plant is evaluated. This is done using Integrated Definition Function model IDEF0 to show the activities involved in the needs analysis phase as shown in figure 3.



[Figure 4] IDEF0 Level 0 diagram for Needs analysis

The needs analysis process can be decomposed into smaller activities in order to understand the process and the interrelationship between the inputs, enablers,



controls and output. The decomposition is shown using figure 5.

[Figure 5] IDEF0 Level 1 diagram for Needs analysis

#### 3.1.1 Operational objectives

Many maintenance strategies have been developed and used in both service and nuclear industries. The use of traditional preventive maintenance and corrective maintenance that is time directed have led to performance of some tasks that are not critical and in equal measures some important tasks have been ignored. The following are some of the operational objectives that will be expected to be provided by RCM :

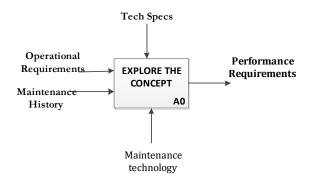
- To provide high component reliability
- To reduce component failure rate
- To reduce the maintenance cost
- To reduce the maintenance intervals

#### 3.1.2 Functional analysis

In this phase the possibility of developing a strategy that fulfills the operational objectives is evaluated. The operational objectives are translated into functional requirements. The functions to be performed by each stakeholder in implementing RCM are allocated at this phase. Visualizing all required data and materials to perform RCM process.

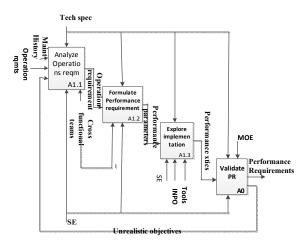
#### 3.1.3 Feasibility definition

The feasibility of the new maintenance strategy is evaluated on the basis of the cost effectiveness and the availability of the necessary skills to effectively implement the proposed new maintenance strategy. The outcome of this process is a more refined, feasible strategy capable of being implemented by the concerned utility.


#### 3.1.4 Needs validation

The validity of the process is evaluated on the basis of cost implication and the performance of the strategy. The benefits accrued from the proposed maintenance strategy will only be realized if the utility can afford the cost of implementation. Therefore there is need to re-evaluate the stakeholders operational objectives and select only the realistic objectives. The output of this process is operational requirements to be passed on to the next stage of concept exploration for further analysis.

#### 3.2 Concept exploration


This is the phase of concept development where the various solution candidates or alternatives are discussed and evaluated in order to meet the operational requirements. The principal objective of the concept exploration phase is to convert operational objectives into engineering oriented concept that would explicitly provide basis for selecting an acceptable functional and physical

system concept. The analysis of concept exploration can be illustrated using the IDEFO level 0 shown in the figure below:



[Figure 6] IDEF0 Level 0 diagram for Concept Exploration

The activities performed in concept exploration can be decomposed further into sub-functions to enhance the understanding the interactions involved in terms of inputs, enablers, controls and outputs. This decomposition is shown in the figure below :



[Figure 7] IDEF0 Level 1 diagram for Concept Exploration phase

#### 3.2.1 Operational requirements analysis

This step evaluates the completeness and consistency of the operational requirements. It uses the initial set of operational requirements, an operation concept of the RCM and the operational scenario showing the environment of operation of the system. The operational objectives are refined as below :

- To allow only one component failure in three years
- To provide above 97.5% component availability
- To reduce the maintenance cost
- To increase the maintenance intervals from 18months to 20months

The requirement elicitation would be obtained from the following sources :

- FSAR
- Operations personnel
- Maintenance personnel
- Safety expert
- I&C expert

The output of the process is a set of well evaluated operational requirements.

#### 3.2.2 Performance requirement analysis

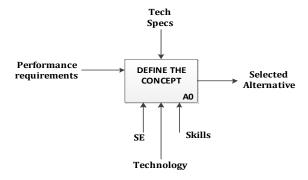
This analysis is concerned with what to be performed and by how much to perform the functions in order to achieve or satisfy the operational requirements. In attempting to satisfy the operational requirement for the maintenance strategy, many options can be proposed from which the best alternative should be chosen. The output of this process is performance parameters.

#### 3.2.3 Implementation of concept exploration

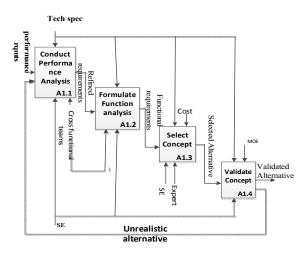
This process explores a wide range of maintenance alternatives and carries out SWOT analysis and assesses the performance, risk, cost and adaptability of the alternatives in terms of the skills required. The various functional failure modes will require that the following maintenance strategies are explored in terms of why, how, when, who and where they can be applied ;

- Condition directed task
- Time directed tasks
- Functional Failure Finding tasks
- Run to Failure or corrective maintenance tasks

#### 3.2.4 Performance requirements validation

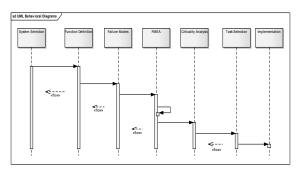

This is done by integrating the requirements derived from the alternative candidate solutions and their effectiveness to meet the stated operational requirements. If there is any over stated operational requirement, then it is fed back to the operational analysis for re-evaluation since the available maintenance strategies may not be able to meet the operation requirements.

#### 3.3 Concept definition


This phase marks the beginning of serious work of defining the functional and physical characteristics of RCM. The selected maintenance strategy is supposed to meet all the refined operational needs as described in the preceding conceptual phases. At this stage a number of specialty engineers are added onto the project team to boost the implementation of the selected maintenance strategy. The process is described using an IDEF0 Level 0 diagram shown in figure 8.

The concept definition phase can be decomposed into smaller processes to make it easier to understand the interaction and interrelations.

- Performance Requirement analysis
- Functional analysis
- Concept selection
- Concept validation




[Figure 8] IDEF0 Level 0 diagram for Concept Definition phase





# 4. Design of reliability centered maintenance process



[Figure 10] Sequence diagram for RCM process

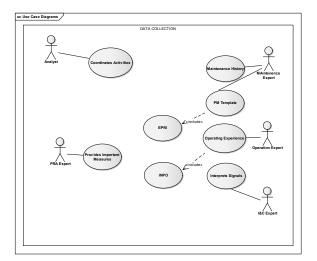
The RCM process involves the system selection in which the system of interest is chosen. Functions of the selected system are defined and the possible failure modes of the system that can lead to the failure of the system to fulfill its functions are outlined. The Failure Mode and effects analysis is then done and this helps in the identification of the dominant failure modes and the outlines the consequences of the failure modes on the system and plant level. Criticality analysis is then carried out to categorize the failure modes according to their criticality to safety, availability, and maintenance cost. The RCM process ends with the selection of the maintenance task for the component.

#### 4.1 System selection

The system of study was selected based on the results from PSA for OPR 1000. Table 9 shows the ranking of the importance measures (Risk Achievement worth, Risk Reduction Worth). In table 9, the pump has the greatest, RAW and RRW and therefore the most critical component in the containment spray system [6].

| Event         | RAW    | RRW    |
|---------------|--------|--------|
| CSXPRA-CSPUMP | 1.0300 | 1.0007 |
| CSMV01A-003   | 1.0200 | 1.0000 |
| CSMV01B-004   | 1.0200 | 1.0000 |
| CSHEM2A-HE01A | 1.0100 | 1.0000 |

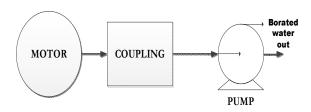
#### <Table 9>important measures ranking


#### 4.2 Data collection

The data used for this study is collected through the following ways ;

 Maintenance history from maintenance personnel

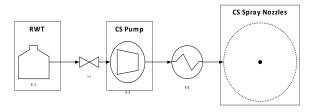
- Operating experience from the operations staff
- Probabilistic Safety Assessment results from PRA experts
- Review of INPO and EPRI documentation
- Instrumentation and Control expert(trip signals)


The data collection process is presented using USE CASE diagram to give a clear understanding of the interactions involved in the information gathering by various stakeholders.



[Figure 11] USE CASE diagram for data collection

#### 4.3 System boundary


The system of interest consists of the pump and the drive motor. This is illustrated in figure 12. The pump consists of the impeller, shaft, coupling, bearings, casing, mechanical seals, O-rings while the motor consists of the rotor and the stator.



[Figure 12] System boundary

#### 4.4 System functions and functional failures

- Provides Cooling and depressurizing the containment atmosphere after the accident.
- Provides a backup to the Shutdown Cooling pump when it is unavailable



[Figure 13] Functional Block diagram for the CS system

#### 4.5 Root cause and failure analysis

The potential causes of the failures on the components are evaluated in detail for each failure mode. The root cause analysis for the pump and the motor drive forms the input for the criticality analysis. The analysis is shown in table 10.

#### 4.6 Failure mode and effect analysis

Failure Mode and effect analysis is a technique used to identify the potential functional failures, the effects of those failures on system, evaluates risk priority numbers for the failure modes, and suggests possible remedial measures to prevent identified problems. The failure mode and effect analysis is tabulated in table 11.

#### 4.7 Criticality analysis for the pump components

The criticality analysis is based on the effects of the failure modes on the plant's safety, availability and maintenance cost. The safety aspect is allocated a weight of 50%, since in nuclear power plant; safety is the most important factor. Availability of the safety component to sustain production of full power is assigned 30% and the cost incurred by such failures has a weight of 20%. The value ranging from 1-4 is then allocated to the failure causes depending on their severity on safety, availability and maintenance cost. The ranking is based on the expert judgment and operating experience on the failure modes consequences [8]. Criticality analysis is carried out in table 13.

Severe to safety : If the failure mode induces a loss of vital safety function

*Severe to availability/production :* If the failure induces a shutdown or reduction in the power level.

Severe to maintenance : If the failure mode leads to costly repairs

*Not severe* : If the failure mode does not lead to any severity to safety, availability or maintenance costs.

#### 4.8 Task selection

The maintenance tasks are selected based on the failure mode impact on safety, availability, economic and whether the failures are hidden or evident to operator [9]. Table 14 shows the task selection process.

| Item                   | Failure Mechanism                                  | Root cause                                                                                                                                                                                                                 |
|------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impeller               | – Low flow rate                                    | <ol> <li>Vane thinning,</li> <li>wear vortexing</li> </ol>                                                                                                                                                                 |
|                        | - Low discharge pressure                           | ① Loose or failed key                                                                                                                                                                                                      |
|                        | – No liquid delivery                               | ① Damage by debris                                                                                                                                                                                                         |
|                        | <ul> <li>High vibration at<br/>impeller</li> </ul> | <ol> <li>Wear- cavitation</li> <li>Rubbing-motor thrust</li> <li>Face/shroud rubbing</li> </ol>                                                                                                                            |
| Bearings-Anti-Friction | High bearing temperature                           | <ol> <li>Wear- fatigue- age</li> <li>Wear- fatigue-misalignment</li> <li>Wear- fatigue- excessive loading</li> <li>Wear- fatigue- personnel error</li> </ol>                                                               |
| Kingsbury Bearings     | High bearing temperature                           | <ol> <li>Wear- incorrect lubricant</li> <li>Wear- insufficient lubricant</li> <li>Wear- insufficient lubricant</li> <li>Wear- excessive oil</li> <li>Wear- electric current</li> </ol>                                     |
| Rotor                  | Rotor not turning                                  | <ol> <li>Loose lamination</li> <li>Failed rotor band/shorting rings</li> <li>Rotor/stator mechanical interface problem</li> <li>Loose retaining rings</li> <li>Loose rotor cage</li> </ol>                                 |
| Stator                 | Very high temperature                              | <ol> <li>Insulation breakdown of lamination</li> <li>Contaminated laminations</li> <li>Winding insulation degradation</li> <li>Winding insulation degradation from corona</li> <li>Loose blocking &amp; bracing</li> </ol> |
| Motor leads            | High electrical resistance                         | ① Degraded insulation                                                                                                                                                                                                      |
| Electrical connections | Arcing                                             | <ol> <li>High resistance</li> <li>Degraded insulation</li> </ol>                                                                                                                                                           |
| Gasket & O-Rings       | Leakages                                           | <ol> <li>Corroded- wrong materials</li> <li>Degraded- aging</li> <li>Improper installation</li> <li>High temperature</li> </ol>                                                                                            |
| Pump/Motor coupling    | High vibration at coupling                         | <ol> <li>Improper fit</li> <li>Imbalance</li> <li>Damaged adjustment nut' plate</li> </ol>                                                                                                                                 |
| Mechanical Seal        | Leakages                                           | ① Worn out seals                                                                                                                                                                                                           |
| Shaft                  |                                                    | <ol> <li>Cracked</li> <li>Whip, off BEP</li> <li>Shaft wear</li> <li>Bent shaft</li> </ol>                                                                                                                                 |

#### <Table 10> Root Cause analysis for CS pump

| Item                  | Failure Mode                                 | Effect on Pump                      | Effect on<br>System | Effect on<br>Plant |
|-----------------------|----------------------------------------------|-------------------------------------|---------------------|--------------------|
| Impeller              | Vane thinning,                               | Low efficiency                      | Entry into<br>LCO   | Power<br>reduction |
|                       | wear vortexing                               | Low efficiency                      | Entry into<br>LCO   | Power<br>reduction |
|                       | Loose or failed key                          | Suction pressure reduction          | System NPSH<br>low  | Power<br>reduction |
|                       | Damage by debris                             | No discharge flow                   | No system<br>flow   | Power<br>reduction |
|                       | Wear- cavitation                             | Low efficiency                      | Entry into<br>LCO   | Power<br>reduction |
|                       | Rubbing-motor thrust                         | Vibration                           | System NPSH<br>low  | Power<br>reduction |
|                       | Face/shroud rubbing                          | Vibration                           | System NPSH<br>low  | Power<br>reduction |
| Bearings-<br>Anti-    | Wear- fatigue- age                           | Low efficiency                      | Entry into<br>LCO   | Power<br>reduction |
| Friction              | Wear- fatigue-misalignment                   | Excessive pump vibration            | System NPSH<br>low  | Power<br>reduction |
|                       | Wear- fatigue- excessive<br>loading          | Pump shutdown                       | No system<br>flow   | Power<br>reduction |
|                       | Wear- fatigue- personnel<br>error            | Pump shutdown                       | No system<br>flow   | Power<br>reduction |
| Kingsbury<br>Bearings | Wear- incorrect lubricant                    | Pump corrosion                      | Low system<br>flow  | Power<br>reduction |
|                       | Wear- insufficient lubricant                 | Pump overheating(adhesive wear)     | Low system<br>flow  | Power<br>reduction |
|                       | Wear- excessive oil                          | Pump failure due grease<br>churning | No system<br>flow   | Power<br>reduction |
|                       | Wear- electric current                       | Pump motor malfunction              | No system<br>flow   | Power<br>reduction |
| Rotor                 | Loose lamination                             | Low motor efficiency                | Low system<br>flow  | Power<br>reduction |
|                       | Failed rotor band/shorting rings             | shorting Motor shutdown             |                     | Power<br>reduction |
|                       | Rotor/stator mechanical<br>interface problem | Noise and vibration on the motor    | Low system<br>flow  | Power<br>reduction |
|                       | Loose retaining rings                        | Motor leakages                      | Low system<br>flow  | Power<br>reduction |
|                       | Loose rotor cage                             | Noise and vibration on the motor    | Low system<br>flow  | Power<br>reduction |

#### <Table 11> Failure Mode and Effect analysis for CS pump

| Item                      | Failure Mode                                          | Effect on Pump                                                                                           | Effect on<br>System | Effect on<br>Plant |
|---------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------|--------------------|
| Stator                    | Insulation breakdown of lamination                    | Motor short circuit<br>Motor over-heating                                                                | No system<br>flow   | Power<br>reduction |
|                           | Contaminated laminations                              |                                                                                                          | No system<br>flow   | Power<br>reduction |
|                           | Winding insulation degradation                        | Motor over-heating                                                                                       | No system<br>flow   | Power<br>reduction |
|                           | Winding insulation degradation from corona            | Motor over-heating                                                                                       | No system<br>flow   | Power<br>reduction |
|                           | Loose blocking & bracing                              | Motor noise & vibration                                                                                  | No system<br>flow   | Power<br>reduction |
| Motor leads               | Degraded insulation                                   | Motor fails to start                                                                                     | No system<br>flow   | Power<br>reduction |
| Electrical<br>connections | High resistance                                       | Low motor motive force                                                                                   | No system<br>flow   | Power<br>reduction |
|                           | Degraded insulation                                   | Motor fails to start                                                                                     | No system<br>flow   | Power<br>reduction |
| Gasket &<br>O-Rings       | Corroded- wrong materials Pump internal liquid leakag |                                                                                                          | Low system<br>flow  | Power<br>reduction |
|                           | Degraded- aging                                       | Pump capacity greatly reduced                                                                            | Low system<br>flow  | Power<br>reduction |
|                           | Improper installation                                 | Eminent impeller wear                                                                                    | Low system<br>flow  | Power<br>reduction |
| Pump/Motor<br>coupling    | Improper fit                                          | Loss of pumping efficiency                                                                               | Low system<br>flow  | Power<br>reduction |
|                           | Imbalance                                             | Possible seals damage                                                                                    | Low system<br>flow  | Power<br>reduction |
|                           | Damaged adjustment nut'<br>plate                      | Noise and vibration on the pump                                                                          | Low system<br>flow  | Power<br>reduction |
| Mechanical<br>Seal        | Worn out seals                                        | Loss of pumping efficiency<br>Leakages                                                                   | Low system<br>flow  | Power<br>reduction |
| Shaft                     | Cracked                                               | Pump low efficiency                                                                                      | Low system<br>flow  | Power<br>reduction |
|                           | Whip, off BEP (Best efficiency point)                 | Possible bearing damage                                                                                  | Low system<br>flow  | Power<br>reduction |
|                           | Shaft wear                                            | Increase in shaft radial movement                                                                        | Low system<br>flow  | Power<br>reduction |
|                           | Bent shaft                                            | Vibration<br>Eventual coupling failure                                                                   | Low system<br>flow  | Power<br>reduction |
| Casing                    | Leaking casing                                        | <ul> <li>Reduction in pumping<br/>rate</li> <li>Possible corrosion on all<br/>pump components</li> </ul> | Low system<br>flow  | Power<br>reduction |

| Criteria                    | Unit | Weight | Level                   |
|-----------------------------|------|--------|-------------------------|
| Effect on Safety            | S    | 50%    | [1]Less critical        |
|                             |      |        | [2]Moderately critical  |
|                             |      |        | [3]Critical             |
|                             |      |        | [4]Very Critical        |
|                             |      |        |                         |
| Effect on Availability      | А    | 30%    | 1]Less critical         |
|                             |      |        | [2] Moderately critical |
|                             |      |        | [3]Critical             |
|                             |      |        | [4]Very Critical        |
|                             |      |        |                         |
| Effect on Maintenance costs | С    | 20%    | [1]Low                  |
|                             |      |        | [2] Moderate            |
|                             |      |        | [3]High                 |
|                             |      |        | [4]Very High            |
|                             |      |        |                         |

<Table 11> Level of importance

Table 11 shows the weight allocation to each criterion and the level of importance attached to them. Very critical implies that the effect of failure mechanism on the criterion is high while less critical means the impact on criterion is negligible. The ranking level 4 shows higher impact on the criterion as compared to rank level 1.

| <table< th=""><th>12&gt;</th><th>Criticality</th><th>analysis</th></table<> | 12> | Criticality | analysis |
|-----------------------------------------------------------------------------|-----|-------------|----------|
|-----------------------------------------------------------------------------|-----|-------------|----------|

| Category | Measure of Criticality |
|----------|------------------------|
| Q        | 4.0-3.0                |
| R        | 3.0-2.0                |
| S        | 2.0-1.5                |
| Т        | 1.5-1.0                |

Table 12 illustrates the criticality classes Q to R in the first column and the criticality index on the second column. The measure of criticality is calculated using formula [1]. These values are used to determine the type of maintenance task to be applied on each failure mode.

| Item                       | Failure Mode                                    | Safety | Availability | Cost | MOC | Class | Description                                 |
|----------------------------|-------------------------------------------------|--------|--------------|------|-----|-------|---------------------------------------------|
| Impeller                   | Vane thinning,                                  | 4      | 4            | 3    | 3.8 | Q     | Measure pump head                           |
|                            | wear vortexing                                  | 4      | 4            | 3    | 3.8 | Q     | Measure impeller vibration                  |
|                            | Loose or failed<br>key                          | 4      | 4            | 2    | 3.6 | Q     | Measure pump head                           |
|                            | Damage by debris                                | 4      | 4            | 4    | 4.0 | Q     | Re-design by adjusting<br>strainer position |
|                            | Wear-<br>cavitation                             | 4      | 4            | 4    | 4.0 | Q     | Measure pump flow<br>rate                   |
|                            | Rubbing-motor<br>thrust                         | 4      | 4            | 3    | 3.8 | Q     | Measure impeller vibration                  |
|                            | Face/shroud<br>rubbing                          | 4      | 4            | 3    | 3.8 | Q     | Measure impeller acoustic<br>level          |
| Bearings-<br>Anti-Friction | Wear- fatigue-<br>age                           | 4      | 3            | 2    | 3.3 | Q     | Measure pump bearing<br>vibration           |
|                            | Wear-<br>fatigue-misalignm<br>ent               | 4      | 3            | 2    | 3.3 | Q     | Measure<br>vibration+acoustics              |
|                            | Wear- fatigue-<br>excessive loading             | 4      | 3            | 2    | 3.3 | Q     | Measure loading+ vibration                  |
|                            | Wear- fatigue-<br>personnel error               | 4      | 4            | 2    | 3.6 | Q     | Check the training needs                    |
| Kingsbury<br>Bearings      | Wear- incorrect<br>lubricant                    | 4      | 3            | 2    | 3.3 | Q     | Measure pump motor oil contamination level  |
|                            | Wear-<br>insufficient<br>lubricant              | 4      | 4            | 2    | 3.6 | Q     | Measure pump motor<br>vibration+acoustics   |
|                            | Wear- excessive<br>oil                          | 4      | 4            | 2    | 3.6 | Q     | Measure<br>vibration+acoustics              |
|                            | Wear- electric<br>current                       | 4      | 4            | 2    | 3.6 | Q     | Measure<br>vibration+acoustics              |
| Rotor                      | Loose lamination                                | 4      | 4            | 4    | 4.0 | Q     | Measure winding temp                        |
|                            | Failed rotor<br>band/shorting<br>rings          | 4      | 4            | 4    | 4.0 | Q     | Measure circuit resistance                  |
|                            | Rotor/stator<br>mechanical<br>interface problem | 4      | 3            | 2    | 3.3 | Q     | Measure<br>vibration+acoustics              |
|                            | Loose retaining<br>rings                        | 4      | 2            | 1    | 2.8 | R     | Replace rings                               |
|                            | Loose rotor cage                                | 4      | 2            | 1    | 2.8 | R     | Replace cages                               |
| Stator                     | Insulation<br>breakdown of<br>lamination        | 4      | 4            | 4    | 4.0 | Q     | Measure stator insulation                   |

<Table 13> Criticality analysis for containment spray pump

| Item                   | Failure Mode                                     | Safety | Availability | Cost | MOC | Class | Description                                       |
|------------------------|--------------------------------------------------|--------|--------------|------|-----|-------|---------------------------------------------------|
|                        | Contaminated laminations                         | 4      | 4            | 4    | 4.0 | Q     | Failure finding task                              |
|                        | Winding insulation degradation                   | 4      | 4            | 4    | 4.0 | Q     | Measure winding<br>temperature+ PI level          |
|                        | Winding insulation<br>degradation from<br>corona | 4      | 4            | 2    | 3.6 | Q     | Measure winding<br>temperature+ FFT of<br>current |
|                        | Loose blocking & bracing                         | 4      | 3            | 2    | 3.3 | Q     | Tighten/Replace block                             |
| Motor leads            | Degraded<br>insulation                           | 4      | 4            | 1    | 3.4 | Q     | Measure winding<br>temperature+ FFT of<br>current |
| Electrical             | High resistance                                  | 3      | 4            | 2    | 3.1 | Q     |                                                   |
| connections            | Degraded insulation                              | 4      | 4            | 1    | 3.4 | Q     | Measure insulation & PI<br>level                  |
| Gasket &<br>O-Rings    | Corroded- wrong materials                        | 4      | 4            | 1    | 3.4 | Q     | Replace gaskets/ rings                            |
|                        | Degraded- aging                                  | 4      | 4            | 1    | 3.4 | Q     | Measure<br>vibration+acoustics                    |
|                        | Improper<br>installation                         | 4      | 4            | 1    | 3.4 | Q     | Failure finding task                              |
| Pump/Motor<br>coupling | Improper fit                                     | 4      | 4            | 2    | 3.6 | Q     | Measure<br>vibration+acoustics                    |
|                        | Imbalance                                        | 4      | 4            | 2    | 3.6 | Q     | Measure<br>vibration+acoustics                    |
|                        | Damaged<br>adjustment nut'<br>plate              | 4      | 3            | 1    | 3.1 | Q     | Measure<br>vibration+acoustics                    |
| Mechanical<br>Seal     | Worn out seals                                   | 4      | 4            | 3    | 3.8 | Q     | Measure oil level                                 |
| Shaft                  | Cracked                                          | 4      | 4            | 3    | 3.8 | Q     | Measure<br>vibration+acoustics                    |
|                        | Whip, off BEP<br>(Best efficiency<br>point)      | 4      | 4            | 1    | 3.4 | Q     | Measure<br>vibration+acoustics                    |
|                        | Shaft wear                                       | 4      | 4            | 2    | 3.6 | Q     | Measure<br>vibration+acoustics                    |
|                        | Bent shaft                                       | 4      | 4            | 3    | 3.8 | Q     | Measure<br>vibration+acoustics                    |
| Casing                 | Leaking casing                                   | 3      | 4            | 3    | 3.8 | Q     | Measure oil level                                 |

Table 13 shows the computation of measures of criticality for the pump's failure mechanisms. A value of 4.0 shows a highly critical failure mode whose degradation should be monitored closely. A value of between 1.5–1.0 indicates a less significant failure mode that can be run to failure.

| Item                       | Failure Mode                        | Class | Selected Task                                                                 | Monitoring Parameters                               |
|----------------------------|-------------------------------------|-------|-------------------------------------------------------------------------------|-----------------------------------------------------|
| Impeller                   | Vane thinning,                      | Q     | Condition directed<br>[Vibration analysis]                                    | Measure pump head                                   |
|                            | wear vortexing                      | Q     | Condition directed<br>[Vibration analysis]                                    | Measure impeller vibration                          |
|                            | Loose or failed key                 | Q     | Condition directed<br>[Vibration analysis                                     | Measure pump head                                   |
|                            | Damage by debris                    | Q     | Re-design                                                                     | Change strainer location                            |
|                            | Wear-<br>cavitation                 | Q     | Condition directed<br>[Vibration analysis                                     | Measure pump flow rate                              |
|                            | Rubbing-motor<br>thrust             | Q     | Condition Directed [<br>vibration analysis]                                   | Measure impeller vibration                          |
|                            | Face/shroud<br>rubbing              | Q     | Condition directed<br>[Airborne acoustic<br>analysis]                         | Measure impeller acoustic level                     |
| Bearings-<br>Anti-Friction | Wear- fatigue- age                  | Q     | Condition directed<br>[vibration analysis                                     | Measure bearing casing vibration                    |
|                            | Wear-<br>fatigue-misalignment       | Q     | Condition directed<br>[vibration analysis+<br>Airborne acoustic<br>analysis]  | Measure bearing casing<br>vibration+acoustics level |
|                            | Wear- fatigue-<br>excessive loading | Q     | Condition directed<br>[vibration analysis]                                    | Measure loading+ vibration                          |
|                            | Wear- fatigue-<br>personnel error   | Q     | Failure finding                                                               | Check personnel training level.                     |
| Kingsbury<br>Bearings      | Wear- incorrect<br>lubricant        | Q     | Condition directed<br>[Lubrication analysis]                                  | Measure oil bearing contamination level             |
|                            | Wear- insufficient<br>lubricant     | Q     | Condition directed<br>[vibration analysis+<br>Airborne acoustic<br>analysis]  | Measure vibration+acoustics                         |
|                            | Wear- excessive oil                 | Q     | Condition directed<br>[vibration analysis+<br>Airborne acoustic<br>analysis]  | Measure<br>vibration+acoustics                      |
|                            | Wear- electric<br>current           | Q     | Condition directed<br>[vibration analysis+<br>Airborne acoustic<br>analysis]  | Measure vibration+acoustics                         |
| Rotor                      | Loose lamination                    | Q     | Condition directed<br>[Infrared-Thermography<br>+ Motor current<br>signature] | Measure winding temp                                |
|                            | Failed rotor<br>band/shorting rings | Q     | Condition directed<br>[Infrared-thermography<br>+motor current<br>signature   | Measure circuit resistance                          |

<sup>&</sup>lt;Table 14> Task selection

| Item                   | Failure Mode                                     | Class | Selected Task                                                                                           | Monitoring Parameters                          |
|------------------------|--------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                        | Rotor/stator<br>mechanical interface<br>problem  | Q     | Condition directed<br>[Infrared-thermography<br>+vibration analysis]                                    | Measure<br>vibration+acoustics                 |
|                        | Loose retaining rings                            | R     | Time directed<br>task[Scheduled<br>restoration]                                                         | Replace rings                                  |
|                        | Loose rotor cage                                 | R     | Time directed<br>task[scheduled<br>tightening]                                                          | Replace cages                                  |
| Stator                 | Insulation breakdown<br>of lamination            | Q     | Condition directed<br>[Infrared-Thermography<br>+ motor current<br>signature+motor circuit<br>analysis] | Measure stator insulation                      |
|                        | Contaminated laminations                         | Q     | Failure Finding Task                                                                                    | FF                                             |
|                        | Winding insulation<br>degradation                | Q     | Condition directed<br>[Infrared-Thermography<br>+ motor current<br>signature+motor circuit<br>analysis] | Measure winding temperature+<br>PI level       |
|                        | Winding insulation<br>degradation from<br>corona | Q     | Condition directed<br>[Infrared-Thermography<br>+ motor current<br>signature+motor circuit<br>analysis] | Measure winding temperature+<br>FFT of current |
|                        | Loose blocking &<br>bracing                      | Q     | Time directed<br>task[Scheduled<br>restoration]                                                         | Tighten/Replace block                          |
| Motor leads            | Degraded insulation                              | Q     | Condition directed<br>[Infrared-Thermography<br>+ motor current<br>signature+motor circuit<br>analysis] | Measure winding temperature+<br>FFT of current |
| Electrical connections | High resistance                                  | Q     | Condition directed<br>[Infrared-thermography]                                                           | Measure temperature of connections.            |
| connections            | Degraded insulation                              | Q     | Condition directed<br>[Infrared-Thermography<br>+ motor current<br>signature+motor circuit<br>analysis] | Measure insulation & PI level                  |
| Gasket &<br>O-Rings    | Corroded- wrong<br>materials                     | Q     | Time directed<br>task[Scheduled<br>restoration]                                                         | Replace gaskets/ rings                         |
|                        | Degraded- aging                                  | Q     | Condition directed<br>[Airborne acoustic<br>analysis+vibration<br>analysis]                             | Measure vibration+acoustics                    |
|                        | Improper installation                            | Q     | Failure finding                                                                                         | Check personnel training level.                |
| Pump/Motor             | Improper fit                                     | Q     | Condition directed                                                                                      | Measure vibration+acoustics                    |

| Item               | Failure Mode                          | Class | Selected Task                                                            | Monitoring Parameters       |
|--------------------|---------------------------------------|-------|--------------------------------------------------------------------------|-----------------------------|
| coupling           |                                       |       | [Vibration analysis+<br>Airborne<br>acoustics+Infra-red<br>thermography] |                             |
|                    | Imbalance                             | Q     | Condition directed<br>[Vibration analysis+<br>Airborne acoustics]        | Measure vibration+acoustics |
|                    | Damaged adjustment<br>nut' plate      | Q     | Condition directed<br>[Vibration analysis+<br>Airborne acoustics]        | Measure vibration+acoustics |
| Mechanical<br>Seal | Worn out seals                        | Q     | Condition directed<br>[Airborne acoustic<br>analysis                     | Measure oil level           |
| Shaft              | Cracked                               | Q     | Condition directed<br>[Vibration analysis+<br>Airborne acoustics         | Measure vibration+acoustics |
|                    | Whip, off BEP (Best efficiency point) | Q     | Condition directed [                                                     | Measure vibration+acoustics |
|                    | Shaft wear                            | Q     | Condition directed<br>[Vibration analysis+<br>Airborne Acoustics]        | Measure vibration+acoustics |
|                    | Bent shaft                            | Q     | Condition directed<br>[Vibration analysis+<br>Airborne acoustics]        | Measure vibration+acoustics |
| Casing             | Leaking casing                        | Q     | Condition directed<br>[Airborne acoustic<br>analysis                     | Measure oil level           |

## 5. Conclusion

The criticality analysis shows that most of the pump failure modes can be monitored using condition based techniques. These tools detect and trend the degradation indicators before the potential failure occurs. The trended results are used to carry out maintenance on the components before failure. RCM increases the mean time before failure of component and consequently improved availability. The proposed maintenance strategies reduce the number of periodic maintenance activities and therefore save the maintenance cost.

### References

- Neil Bloom, Reliability centered maintenance implementation made easier, McGraw-Hill, Inc. New York. 2005.
- [2] Rausand M, Reliability centered maintenance Reliability Engineering and system Safety vol.60, pp2, 1998.
- [3] IAEA-TECDOC-658, Safety related maintenance in the framework of RCM concept, 17-37, 2010.
- [4] Alexander Kossiakoff, Systems Engineering Principles and practice 2nd Edition, John Willey& Sons Publishers, 57–159, 2011

- [5] Gregory S. Patrick, Decision making in systems Engineering and management, 2nd Edition, John Willey & Sons Publishers, New Jersey 297–337, 2010
- [6] Probabilistic Safety Assessment results for Ulchin 3&4
- [7] Final Safety Analysis Report for YGN 3&4, amendment 537, clause 6.5.2,

2011.

- [8] IAEA-TEC-DOC-1551-Implementation strategies and tools for condition based maintenance at NPP
- John Moubray, Reliability centered maintenance 2nd Edition, Elsevier Publishers, 19–57, 1997