• Title/Summary/Keyword: Failure behaviour

Search Result 510, Processing Time 0.019 seconds

Static Compressive Strength of Thick Unidirectional Carbon Fiber - Epoxy Laminate (두꺼운 일방향 탄소섬유-에폭시 적층판의 정적 압축 강도 연구)

  • Lee, J.;Soutis, C.;Gong, Chang-Deok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.61-65
    • /
    • 2005
  • Existing test methods for thick-section specimens ( 4mm) have not provided precise compressive properties to date for the analysis and design of thick structure. A survey of the failure behaviour of such thick specimens revealed that the failure initiated at the top corner of the specimen and propagated down and across the width of the specimen as premature failure, not typically reported for thin compression specimens. In the current study, the premature failure was successfully avoided during compressive testing and the failure mode was quite similar regardless of increasing specimen thickness and specimen volume. Failure mode was similar regardless of increasing specimen thickness and specimen volume, i.e. brooming failure mode combined with longitudinal splitting, interlaminar cracking, fibre breakage and kinkband formation (fibre microbuckling). Nevertheless, average failure strengths of the specimens decreased with increasing specimen thicnkiness from 2mm to 8mm with the T800/924C system (36% strength reduction) and specimen volumes from scaling factor I to scaling factor 4 with the IM7/8552 system (46% strength reduction). It was revealed from the literature$^{11}$ that the thickness effect and scaling effect arc caused by manufacturing defects such as void content and fibre waviness.

  • PDF

A REVIEW AND INTERPRETATION OF RIA EXPERIMENTS

  • Vitanza, Carlo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.591-602
    • /
    • 2007
  • The results of Reactivity-Initiated Accidents (RIA) experiments have been analysed and the main variables affecting the fuel failure propensity identified. Fuel burn-up aggravates the mechanical loading of the cladding, while corrosion, or better the hydrogen absorbed in the cladding as a consequence of corrosion, may under some conditions make the cladding brittle and more susceptible to failure. Experiments point out that corrosion impairs the fuel resistance for RIA transient occurring at cold conditions, whereas there is no evidence of important embrittlement effects at hot conditions, unless the cladding was degraded by oxide spalling. A fuel failure threshold correlation has been derived and compared with experimental data relevant for BWR and PWR fuel. The correlation can be applied to both cold and hot RIA transients, account taken for the lower ductility at cold conditions and for the different initial enthalpy. It can also be used for non-zero power transients, provided that a term accounting for the start-up power is incorporated. The proposed threshold is easy to use and reproduces the results obtained in the CABRI and NSRR tests in a rather satisfactory manner. The behaviour of advanced PWR alloys and of MOX fuel is discussed in light of the correlation predictions. Finally, a probabilistic approach has been developed in order to account for the small scatter of the failure predictions. This approach completes the RIA failure assessment in that after determining a best estimate failure threshold, a failure probability is inferred based on the spreading of data around the calculated best estimate value.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Design of composite plate girders under shear loading

  • Shanmugam, N.E.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Experiments have been carried out on six composite and two plain steel plate girders under shear loading to understand the elastic and inelastic behaviour of such girders. The failure mechanism assumed and used to develop design equations is normally based on the failure patterns observed in the experiments. Therefore, different types of cracks and failure patterns observed in the experiments are reviewed briefly first. Based on the observed failure patterns, a design method to predict the ultimate shear capacity of composite plate girders is proposed in this paper. The values of ultimate shear capacity obtained using the proposed design method are compared with the corresponding experimental values and it is found that the proposed method is able to predict the shear capacity accurately.

Experimental Study on Behaviour of Composite Beams with Ribbed Slabs and Unreinforced Web Openings (리브형 슬래브를 갖는 유공합성보의 거동에 관한 실험적 연구)

  • 김창호;박종원;김희구;이창섭;박준용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.989-994
    • /
    • 2000
  • Nine tests to failure are performed on full-scale eight composite beams with unreinforced web opening having ribbed slabs with formed deck which are perpendicular to the steel section and one steel beam. The effects of slab width, reinforcing of stud, moving of rib, moment-shear ratio are studied. At the low M/V ratio, Vierendeel action around the high moment end of the opening is occurred and the large deflection across the opening and transverse cracking are occurred with increasing of applied load. As the M/V ratio increases, the relative deflection across the opening decreases. And at failure, full tensile strain are occurred at bottom T section of steel beam, and concrete crushes at the High Moment End of the opening. With narrow slabs, diagonal tension failure at the high moment end of the opening is occurred. And with wide slabs, rib punch-through failure is occurred near the high moment end of the opening. The implications for design are discussed.

FALCON code-based analysis of PWR fuel rod behaviour during RIA transients versus new U.S.NRC and current Swiss failure limits

  • Khvostov, G.;Gorzel, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3741-3758
    • /
    • 2021
  • Outcomes of the FALCON code analysis-related part of the STARS-ENSI Service Project on Evaluation of the new U.S.NRC RIA Fuel Safety Criteria and Application to the Swiss Reactors are presented. Substantial conservatism of the updated safety limits for high-temperature and PCMI cladding failure, as proposed in the NRC Regulatory Guide RG 1.236, is confirmed. Applicability of the updated failure limits to fuel safety analysis in the Swiss PWRs, as applied to standard fuel designs using UO2 fuel pellets and SRA Zry-4 as cladding materials is discussed. Conducting of new integral RIA tests with irradiated samples using doped- and gadolinia fuel pellets to support appropriate fuel safety criteria for RIA events is recommended.

Strength assessment of RC deep beams and corbels

  • Adrija, D.;Geevar, Indu;Menon, Devdas;Prasad, Meher
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.273-291
    • /
    • 2021
  • The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.

Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation

  • Sarfarazi, V.;Hajiloo, M.;Ghalam, E. Zarrin;Ebneabbasi, P.
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.565-576
    • /
    • 2020
  • Experimental and discrete element methods were used to investigate the effects of angle of Y shape non-persistent joint on the tensile behaviour of joint's bridge area under brazilian test. concrete samples with diameter of 100 mm and thikness of 40 mm were prepared. Within the specimen, two Y shape non-persistent notches were provided. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0°, 30°, 60°, 90°. Totally, 12 different configuration systems were prepared for Y shape non-persistent joints. Also, 18 models with different Y shape non-persistent notch angle and notch length were prepared in numerical model. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0, 30, 60, 90, 120 and 150. Tensile strength of model materil was 1 MPa. The axial load was applied to the model by rate of 0.02 mm/sec. This testing showed that the failure process was mostly governed by the Y shape non-persistent joint angle and joint length. The tensile strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the tensile behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint length and joint angle. The minimum tensile strength occurs when the angle of larger joint related to horizontal axis was 60°. Also, the maximum compressive strength occurs when the angle of larger joint related to horizontal axis was 90°. The tensile strength was decreased by increasing the notch length. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.