• Title/Summary/Keyword: Failure Study

Search Result 12,057, Processing Time 0.04 seconds

A Risk Metric for Failure Cause in FMEA under Time-Dependent Failure Occurrence and Detection (FMEA에서 고장발생 및 탐지시간을 고려한 고장원인의 위험평가 척도)

  • Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.571-582
    • /
    • 2019
  • Purpose: To develop a risk metric for failure cause that can help determine the action priority of each failure cause in FMEA considering time sequence of cause- failure- detection. Methods: Assuming a quadratic loss function the unfulfilled mission period, a risk metric is obtained by deriving the failure time distribution. Results: The proposed risk metric has some reasonable properties for evaluating risk accompanied with a failure cause. Conclusion: The study may be applied to determining action priorities among all the failure causes in the FMEA sheet, requiring further studies for general situation of failure process.

A study on a Prediction of Dangerous Failure Rate in the Embedded System for the Track Side Functional Module (TFM에 대한 내장형제어기의 위험측고장률 예측에 관한 연구)

  • SHIN Ducko;LEE Jae-Hoon;LEE Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.170-175
    • /
    • 2005
  • This study presents a prediction of a failure rate in a safety required system that consists of a embedded control system, requiring a satisfaction of a quantitative safety requirement. International Standards are employed to achieve a regular procedures in the whole life cycle of a system, for the purpose of a prediction and a evaluation of a fault that might be able to be happened in a system. This International Standards uses SIL (Safety Integrity Level) to evaluate a safety level of a system. SIL is divided into 4 levels, from level 1 to level 4, and each level has functional failure rate and dangerous failure rate of a system. In this paper we describe the conventional method to predict the dangerous failure rate and propose a method using hazard analysis to predict the dangerous failure rate. The conventional method and the technique using hazard analysis to predict the dangerous failure rate are made a comparison through the control modules of the interlocking system in KTX. The proposed method verify better effectiveness for the prediction of the dangerous failure rate than that of the conventional method.

A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System (원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰)

  • Han, Seok-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

A Study on the Stability and Mechanism of Three-Hinge Failure (Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.5-15
    • /
    • 2017
  • Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

Risk factors for orthodontic fixed retention failure: A retrospective controlled study

  • Kaat Verschueren;Amit Arvind Rajbhoj;Giacomo Begnoni;Guy Willems;Anna Verdonck;Maria Cadenas de Llano-Perula
    • The korean journal of orthodontics
    • /
    • v.53 no.6
    • /
    • pp.365-373
    • /
    • 2023
  • Objective: To investigate the potential correlation between fixed orthodontic retention failure and several patient- and treatment-related factors. Methods: Patients finishing treatment with fixed appliances between 2016 and 2017 were retrospectively included in this study. Those not showing fixed retention failure were considered as control group. Patients with fixed retention failure were considered as the experimental group. Additionally, patients with failure of fixed retainers in the period of June 2019 to March 2021 were prospectively identified and included in the experimental group. The location of the first retention failure, sex, pretreatment dental occlusion, facial characteristics, posttreatment dental occlusion, treatment approach and presence of oral habits were compared between groups before and after treatment separately by using a Fisher exact test and a Mann-Whitney U test. Results: 206 patients with fixed retention failure were included, 169 in the mandibular and 74 in the maxillary jaws. Significant correlations were observed between retention failure in the mandibular jaws and mandibular arch length discrepancy (P = 0.010), post-treatment growth pattern (P = 0.041), nail biting (P < 0.001) and abnormal tongue function (P = 0.002). Retention failure in the maxillary jaws was more frequent in patients with IPR in the mandibular jaws (P = 0.005) and abnormal tongue function (P = 0.021). Conclusions: This study suggests a correlation between fixed retention failure and parafunctional habits, such as nail biting and abnormal tongue function. Prospective studies with larger study populations could further confirm these results.

Impacts of Job Stress and Cognitive Failure on Patient Safety Incidents among Hospital Nurses

  • Park, Young-Mi;Kim, Souk Young
    • Safety and Health at Work
    • /
    • v.4 no.4
    • /
    • pp.210-215
    • /
    • 2013
  • Background: This study aimed to identify the impacts of job stress and cognitive failure on patient safety incidents among hospital nurses in Korea. Methods: The study included 279 nurses who worked for at least 6 months in five general hospitals in Korea. Data were collected with self-administered questionnaires designed to measure job stress, cognitive failure, and patient safety incidents. Results: This study showed that 27.9% of the participants had experienced patient safety incidents in the past 6 months. Factors affecting incidents were found to be shift work [odds ratio (OR) = 6.85], cognitive failure (OR = 2.92), lacking job autonomy (OR = 0.97), and job instability (OR = 1.02). Conclusion: Patient safety incidents were affected by shift work, cognitive failure, and job stress. Many countermeasures to reduce the incidents caused by shift work, and plans to reduce job stress to reduce the workers' cognitive failure are required. In addition, there is a necessity to reduce job instability and clearly define the scope and authority for duties that are directly related to the patient's safety.

$217Plus^{TM}$ 시스템 모형의 민감도

  • Jeon, Tae-Bo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.257-264
    • /
    • 2011
  • In this study, we performed sensitivity study of the $217Plus^{TM}$ system model to various parameters. Specific attention was put to logistics model and its behavior has been examined in terms of non-component failure causes. We first briefly explained the $217Plus^{TM}$ methodology with system level failure rate evaluation. We then applied experimental designs with several failure causes as factors. We used an orthogonal array with three levels of each parameter. Our results indicate that cannot duplicate, induced, and wear-out causes have dominant effects on the system failures and design, parts, and system management have much less but a little strong effects. The results in this study not only figure out the behavior of the predicted failure rate as functions of failure causes but provide meaningful guidelines for practical applications.

  • PDF

A Study on the Reliability of Superconducting Fault Current Limiter and Adjacent Distribution Equipments (초전도한류기와 인근 배전설비의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2122-2127
    • /
    • 2009
  • This study presents the failure rate and repair rate of Superconducting Fault Current Limiter(SFCL) and adjacent distribution equipments. When the fault current penetrated SFCL, the supply of electric power to the customers can be partly continued. It is expected that SFCL makes to improve the reliability index of customers. Contrary to the expectations, the series connection between SFCL and distribution system could deteriorate the reliability index. To evaluate the reliability index in the distribution system including SFCL, the failure rate and repair rate of SFCL are required as well as that of distribution equipments. Also, the insertion of SFCL makes to change the failure rate and repair rate of adjacent equipments. This study proposes a method to calculate the failure rate and repair rate of a component combining SFCL and adjacent equipments.

A Study on the Failure Analysis and Performance Improvement of a Decanter (디칸터의 고장분석 및 성능 향상에 관한 연구)

  • Shin, Chang-Ho;Lee, Dong-Chul;Kim, Woo-Hyung;Choi, Tae-Ju;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.586-592
    • /
    • 2004
  • In this study, the failure analysis of a decanter is carried out and the methods of performance improvement are presented. The decanter is a centrifugal separator that is used to separate water and solids from municipal and industrial sludge. Therefore, the decanter should be designed to improve the dewatering of sludge. Besides high performance, the decanter should guarantee its life time under a severe using condition. For theses reasons, the failure analysis and performance improvement of the decanter are studied. It is found from this study that the failure is caused by mass unbalance, wear, clogging or crack. If these failure causes are prevented, the life time as well as the performance is expected to be improved.