• Title/Summary/Keyword: Failure Rate Evaluation

Search Result 311, Processing Time 0.028 seconds

Development of Flood Control Effect Index by Using Fuzzy Set Theory (Fuzzy 집합 이론을 이용한 홍수조절효과 정량화 지표 개발)

  • Kim, Juuk;Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.415-429
    • /
    • 2011
  • Quantitative evaluation indexes for flood control effect of a multi-purpose reservoir used widely in Korea are the discharge control rate, reservoir release rate, reservoir storage rate, and flood control storage utilization rate. Because these indexes usually use and compare inflow, release, and storage data directly, the uncertainties included in these data are not considered in evaluation process, and the downstream flood control effects are not assessed properly. Also, since the acceptable partial failure in a design of water resources system is not considered, the development of a new flood control effect evaluation index is required. Fuzzy set theory is therefore applied to the development of the index in order to consider the data uncertainty, the downstream flood control effect, and the acceptable partial failure. In this study, the flood control effect of a multi-purpose reservoir is evaluated using the flood control effect index developed by applying fuzzy set theory. The Chungju reservoir basin was selected as a study basin and the storm events of July, 2006 are used to study the applicability of the developed index. The related factors for flood control effect are fuzzified, the acceptable failure region is divided from the system state to evaluate the flood control effect using developed flood control effect index. The flood control effect index were calculated by applying to the study basin and storm events. The results show that the developed index can represent the flood control effect of a reservoir more realistically and objectively than the existing index.

Workflow-based Usability Evaluation of Mobile Phone Messaging Functions (작업흐름도 기반 휴대전화 메시지 기능 사용성 평가)

  • Choi, Jae-Hyun;Kong, Yong-Ku;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.65-73
    • /
    • 2007
  • This study evaluated the short message service (SMS) and multimedia message service (MMS) usability of mobile phones and wireless internet services by performance failure rates and flowcharts that adopted the concept of state diagrams. Forty-eight participants who had an experience of using mobile phones were recruited by posting an advertisement on websites for the experiment. They carried out both SMS and MMS tasks with the mobile phones of LG Cyon and Samsung Anycall as well as the wireless internet services of LGT ez-i, KTF magicN, and SKT NATE. In general, Cyon had the lower performance failure rate than Anycall for SMS, and ez-i had the lowest performance failure rate than the other services for MMS. More specifically through the workflow analysis, most participants used hot keys to take 7-8 steps to send a SMS including a symbol and had a difficulty in typing the symbol. They also took 10-11 steps to send a MMS after taking and attaching two pictures. Anycall, magicN, and NATE had significantly large error and failure rates due to the limited option of the menu paths that users could take and poor compatibilities of menu names and between menu and navigation keys. This study showed the possibility of use of flowcharts for systematic and specific usability evaluation methods and found the causes of performance errors and failures with mobile phones and wireless internet services to provide insight into their design.

Review of Literatures for Development of Clinical Trial Guideline for Total Ankle Arthroplasty (인공발목관절의 임상시험 가이드라인 개발을 위한 문헌적 고찰)

  • Park, Jin Oh;Lee, Moses;Lee, Jin Woo;Lee, Soo Bin;Han, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.4
    • /
    • pp.195-201
    • /
    • 2014
  • Purpose: The purpose of this study is to develop guidelines for clinical trial of the total ankle replacement system for premarket approval. Materials and Methods: We selected and analyzed nine peer-reviewed articles whose quality had been proven in a previous phase. Two investigators extracted parameters for guideline criteria, including number of cases, patient age, follow-up period, failure rate, radiographic osteolysis rate, residual pain rate, and percentage of satisfaction. In addition, the inclusion and exclusion criteria were analyzed and developed. Results: Eight level IV studies and one level II study were included. The average number of cases was 159 cases and the mean patient age was 63.5 years. The mean follow-up period was 4.2 years, ranging from two to nine. The average failure rate of total ankle replacement in mid- to long-term follow-up was approximately 13% (2%~32.3%). The rate of osteolysis was approximately 18%. Residual pain was common (21.4%~46%), but overall patient satisfaction was approximately 85.6% (67.5%~97%). Conclusion: The results could be used as criteria for designing the clinical studies, such as number of cases, patient age (over 60 years), and follow-up period (minimum two years). The clinical scoring system and 36-item short form health survey (SF-36) was the most commonly used method for clinical evaluation for total ankle arthroplasty. In addition, the overall results, including failure rate, osteolysis rate, and patient satisfaction, could be used as a parameter of guidelines for premarket approval.

Probabilistic Evaluation Methodology for Nuclear Components (원전 주요기기의 확률론적 평가 기법)

  • Lee, Joon-Seong;Kwak, Sang-Log;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.459-464
    • /
    • 2001
  • For major nuclear power plant components periodic inspections and integrity assessments are needed for the safety. But many flaws are undetectable due to sampling inspection. Probabilistic integrity assessment is applied to take into consideration of uncertainty and variance of input parameters arise due to material properties, applied load and undetectable flaws. This paper describes a Probabilistic Fracture Mechanics(PFM) analysis based on Monte Carlo(MC) algorithms. Taking important parameters as probabilistic variables such as fracture toughness, crack growth rate and flaw shape, failure probability of major nuclear power plant components is archived as a results of MC simulation. For the verification of these analysis, a comparison study of the PFM analysis using other commercial code, mathematical method is carried out and a good agreement was observed between those results.

  • PDF

Performance Evaluation of Warm Standby Redundant Systems

  • Lee, Chong-Hyung;Shin, Sang-Wook;Lim, Jae-Hak
    • International Journal of Reliability and Applications
    • /
    • v.3 no.3
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, we consider the warm standby redundant system(WSRS) which is consisted of an active unit, a standby unit and a switchover device. In addition, the switchover processing is controlled by a control module. The effect of failure of the control module is taken into account to develop our reliability model for the redundant structure. For the performance evaluation of a redundant system with the function of switchover processing which is assumed to cause the increase of the failure rate of the system, some reliability indices, such as availability, average availability, reliability and steady state availability, are considered.

  • PDF

Resilience Evaluation of Vehicle Driving System Depending on System Architecture (차량 구동 시스템의 구조에 따른 resilience 분석)

  • Byun, Sungil;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.273-279
    • /
    • 2015
  • The vehicle has lots of embedded systems. Each of systems has its own role. In case of the vehicle, simple failure of system can be critical to driver. Therefore all of embedded system should be managed based on importance factors to be effective. In this paper, we consider the resilience as the importance factor for the driving system with ACC(Adaptive Cruise Control). We propose metrics to calculate the resilience of the embedded system. To get the resilience of system, we calculate the reliability and the resilience of nodes in the system using its failure rate. The resilience of whole system can be presented by the resilience of nodes and its weight. We calculate the resilience and compare the centralized structure and the distributed structure.

Safety Evaluation of Wheel-Rail System Based on Fracture Scenarios and Fracture Mechanics (파손시나리오에 의한 차륜-레일의 파괴역학적 안전성 평가)

  • Lee, Dong-Hyung;Seo, Jung-Won;Goo, Byeung-Chun;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.80-84
    • /
    • 2006
  • Fracture mechanics approach can be severly hampered unless considerable detailed specific knowledge is available. The problem of railway wheel-rail system fatigue design is currently undertaken by using assumed conservative design procedures. However, although the failure rate is low, the consequences of any such failure can be far reaching. It has been demonstrated that the tools available for effective management have limits. In the present study, the safety evaluation based on fracture mechanics is carried out. The critical crack size and remaining lifetime are calculated on the wheel for high-speed train.

  • PDF

A Study on the Design and Evaluation of Dual-Duplex System (듀얼 듀플렉스 시스템 설계 및 평가에 관한 연구)

  • Kim, Hyun-Ki;Shin, Duck-Ho;Lee, Key-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.168-176
    • /
    • 2001
  • In this paper, we develop a dual-duplex system which detects a fault by hardware comparator and switches to hot standby redundancy. This system is designed on the basis of MC68000 and can be used in VMEbus. To improve reliability, the dual-duplex system is designed in dual modular redundancy. The failure rate of electrical element is calculated in MILSPEC-217F, and the system RAMS(Reliability, Availiability, Maintainability and Safety) and MTTF(Mean Time to Failure) are evaluated by Markov modeling method. As the evaluation result shows improved reliability, it can be used as a component hardware for a highly reliable control system.

  • PDF

The Evaluation of Safety and Remaining Life on Fracture and Fatigue in Rail Steel (철도레일의 파괴 및 피로에 대한 안전도평가 및 잔류수명계산)

  • 박용걸
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.120-128
    • /
    • 1995
  • The fatigue failure of rail is a principal source of derailment accidents. The reduction of fatigue failures can be achieved by Intensive track maintenance and periodic safety assessments for the railway. For the safety assessments, it is required to have more accurate knowledge for fatigue behavior such as the crack initiation, propagation, crack growth rate and the remaining service life in rail. In this paper, the mean stress effects for the fatigue behavior of rail steel are studied. For this study, the fatigue test is conducted and some equations for fatigue evaluation are applied and compared. From the results, we can see that the fatigue crack growth rate is the more increased as the men stress Is the more increased, the mean stress effect is represented well by the combination of stress intensity factor range and maximum stress intensity factor and Crooker and Range's equation represented by ${\Delta}K, K_{max}$ is the best fit for fatigue evaluation and safety assessment of rail.

  • PDF

Reliability Evaluation of a Microgrid Considering Its Operating Condition

  • Xu, Xufeng;Mitra, Joydeep;Wang, Tingting;Mu, Longhua
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Microgrids offer several reliability benefits, such as the improvement of load-point reliability and the opportunity for reliability-differentiated services. The primary goal of this work is to investigate the impacts of operating condition on the reliability index for microgrid system. It relies on a component failure rate model which quantifies the relationship between component failure rate and state variables. Some parameters involved are characterized by subjective uncertainty. Thus, fuzzy numbers are introduced to represent such parameters, and an optimization model based on Fuzzy Chance Constrained Programming (FCCP) is established for reliability index calculation. In addition, we present a hybrid algorithm which combines scenario enumeration and fuzzy simulation as a solution tool. The simulations in a microgrid test system show that reliability indices without considering operating condition can often prove to be optimistic. We also investigate two groups of situations, which include the different penetration levels of microsource and different confidence levels. The results support the necessity of considering operating condition for achieving accurate reliability evaluation.