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Abstract. In this paper, we consider the warm standby redundant sys-
tem(WSRS) which is consisted of an active unit, a standby unit and a
switchover device. In addition, the switchover processing is controlled
by a control module. The effect of failure of the control module is taken
into account to develop our reliability model for the redundant struc-
ture. For the performance evaluation of a redundant system with the
function of switchover processing which is assumed to cause the increase
of the failure rate of the system, some reliability indices, such as avail-
ability, average availability, reliability and steady state availability, are
considered.
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1. INTRODUCTION

To improve the system reliability, the standby redundant structures such as
electric power generator and airplane jet engines have been widely adopted by the
system designers. In a two-unit repairable standby redundant system, the standby
unit starts operating immediately upon the failure of the active unit and once the
failed active unit is repaired, it assumes the position of standby unit. Thus, these
two units alternate their positions either active or standby whenever the failure
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or repair occurs. Depending on readiness(or consequently, the failure rate) of the
standby unit, it is classified as hot, cold or warm standby unit. The cold standby
unit does not fail when it remains standby and thus, the failure rate of cold standby
unit equals zero. The failure rate of hot standby unit is the same as that of active
unit, while the warm standby unit has a lower failure rate than the active unit, but
its failure rate is greater than zero.

The performance of the system is analyzed with respect to its reliability charac-
teristics, such as reliability function, availability, MTBF, mean residual life function
and so on. One of the most widely used performance criteria of repairable systems
is an availability which is defined as the probability that a system is operating satis-
factorily when it is required to perform the given mission. Because of the fact that
the availability is an important measure to evaluate the performance of the system,
many researchers have worked on these subjects quite extensively.

Lim (1996) and Lim and Koh (1997) study a redundant system with the function
of switchover processing which consists of three units ; an active unit, a standby unit,
a switchover device. Shin et al.(2001) consider a hot standby redundant system
and evaluate the performance of the system by time dependent availability and its
related measures. Figure 1 shows a reference model for such a redundant system.
These articles assume that the failure rate of the system increases by installing the
switchover processing, since the failure of the control module can cause the failure of
the system. In order to develop a reliability model, they distribute such increment
of the failure rate to each unit of the system in such a way that the failure rate of
each unit increases by Ay, = a), where 0 < a < 1 and A is the failure rate of the
unit without the switchover processing. Note that a = 0 implies no failure of the
control module.
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Figure 1. A model of redundant structure with a function of switchover processing.

In this paper, we consider a redundant system with the switchover processing
discussed in Lim (1996) and Lim and Koh (1997). In Section 2, we derive several reli-
ability measures, such as availability, average availability, reliability and steady state
availability for the warm standby redundant system. Section 3 presents numerical
examples to illustrate our results.

2. WSRS MODELLING AND ITS RELATED PERFORMANCE
MEASURES
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2.1 Assumptions

1) All units are independent and have exponential life distributions, each unit hav-
ing a mean life of 1/, and the repair times of unit and switch are exponentially
distributed with a mean of 1/u and 1/7, respectively.

2) The probability of successful switchover operation is assumed to be equal to p.

3) The type of standby unit in the redundant system is a warm standby unit whose
failure rate Ay = 7A, where 0 < 7 < 1.

2.2 WSRS Model

We define four states of the system and the state transition diagram(STD) is
shown in Figure 2. The states 2 and 3 represent the failure of the system. The state
2, which represents uncoverage outage, is caused by the failure of active unit while
the control module is in the failure state and the state 3 is due to the failures of
both units.
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Figure 2. State transition diagram of WSRS.

2.3 Time dependent Transition Probabilities and Related Measures

Leti,i=0,1,2,3, represent the state of warm standby redundant system(WSRS)
and let p;(t) be the probability that the system is in state 7 at time ¢. The flow rate
equations can be established by consideration of the fact that the flow rate out of
the system must be equal to the flow rate into the state. Thus, we have

po(t) = —(1+7)(1+a)Apo(t) + ppi(t)

pit) = —(p+ 1+ )Np1(t) + (p+ 7)1 + @) Apo(t) + Ypa(t) + pps(t) (2.1)
pa(t) = ~yp2(t) + (1 — p)(1 + ) Apo(t)

p3(t) = —wps3(t) + (L + a)Apy(t),

where pl(t) = dp;(t)/dt, i = 0,1,2,3.
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To solve these equations simultaneously for po(t) and p;(t), we may apply the
Laplace and the inverse Laplace transformations. The Laplace transform of a func-
tion f(t) is defined as

flor= [ ” exp(—st)  (t)dt.

Note that for i = 0,1,2,3, the Laplace transform of p;(t) is obtained as p,(s) =
Pi(0) + spi(s). Using the initial conditions, pg(0) = 1 and p1(0) = p2(0) = p3(0) = 0,
it is straightforward to obtain

po(t) = Niexp(—pit) + Nyexp(—fat) + N3exp(—pfat) + Ny (2.2)
and
p1(t) = My exp(—pit) + Ms exp(—[Fat) + Mz exp(—[st) + My, (2.3)

where —(’s are the roots of the following third order equation
2+ Qu+R+7)A+)N+7)s% + <u2 +pr(1+a)(2+7—D)

et @)1ty A E)(1+ a2))\2>s
+

WAL+ o)1 —p)+7) + 1+ 7)1+ )Mk + (L+ a)A)y
= 0

and N; and M, are
4
Ny = (y-B)n - B;) rz—ﬂj/H Bk — 55)
e
and

4
M; = M+a)p+ D)+ 70+ 1) - B)n - B) [ T (6 - 6)

kit

for j =1,2,3,4 and r; and o are (—((1+ )X +2u) + VAL + &) (A(1 + a) +4u))/2
and (—((1 + o)X + 2p) — VA + o) (M1 + ) + 4p)) /2, respectively.

Given the expressions for po(t) and p;(t), we evaluate the following reliability
measures for WSRS.

Availability and Average Availability of WSRS
The availability of WSRS at time ¢, A(t), and average availability of the system
n (0,t], A(t), are obtained as
A(t) = po(t) +pi(t)
3
= Z(Nl + Mz) exp(—ﬁit) + (N4 + M4)

i=1
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and
A) = —}/(:A(u)du
3

= > (Ni+ M)(1 — exp(—Bit))/(Bit) + (Ng + My),

=1

respectively. The expected operating time of WSRS during the time interval (0, ¢]
can be evaluated by Ey(t) = fot[po(u) + p1(u)]du. It follows that the expected down
time of WSRS during (0,t], E4(t), is t — Ey(t).

Reliability and Mean Time to First Failure of WSRS

Letting p and 7y approach to zero, A(t) can be interpreted as the reliability of
WSRS. In this case, the system is considered as a nonrepairable system and its
reliability is obtained as

R(t) = [(p+7)exp(~(1+ a)At) —pexp(—=(1 + 7)(1 + a)At)]/T
for t > 0. Thus, the mean time to first failure(MTTFF) of the system is
o0
/ R(u)du
0

p+T7+1
A+7)1+a)r

MTTFF

2.4 Steady-State Transition Probabilities and Related Measures

To obtain the steady-state transition probabilities, we replace p;(t), i =0, 1,2, 3,
by constants p;(and thus, p;(t) by 0) in equations of (2.1) and solve these equations
simultaneously for pg and p;, where p; can be interpreted as a steady-state transition
probability of state 7. These equations are given as

upr = (L+ 7)1+ a)Apo
B+ A+a)Mpr = (p+7)1+a)Apo + Yp2 + pp3 (24)
(1-p)L+a)po = 7p2
(1+a)dpr = pps.

Straightforward calculation yields

_ 5
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and

_ (L +7)u(l + o)A (2.6)
L= 0 o+ (121 —p) (L + A + 2(1 + a)Za2’ '
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respectively. Therefore, the steady-state availability of the system, denoted by A,
is equal to pp + p;. Although it may not be feasible to prove analytically, A(t) can
be shown to converge to Aw as t becomes sufficiently large numerically.

The following theorem compares a single component system and a WSRS with
regard to its availability. It is well known that the availability of a single component,
denoted by A,, is equal to u/(A + p).

Theorem 1. Let p = 4(1 + 7)Ap and § = (1 + 7)A + p?/y. Given that (-6 +
VOZ—p((p/v) —1))/20+1)A < a < (=1 + DA+ VI +7)22Z 4+ p)/2(1 + 7)),
there exist a p* € [0,1] such that As > Ay for 0 < p < p* and As < Ay for
p* <p<1, wherep* =1— (g —(1+7)a(l +a)\)v/u?(l+a).

Proof. We note that Ay is non-decreasing in p because each of pg and p; is non-
decreasing in p and Ag is a constant. Hence, it is sufficient to show that when p=
0, As > Aw and whenp =1, As < Aw. It is somewhat tedious but straightforward
to show that when p = 0, As > Aw if a > (=6 + /62 — p((p/7) — 1))/2(1 + 7).
Similarly, we can show that whenp = 1, Ag < Aw if (—(1+7)A+/(1 + 7)2X2 + p)/2
(1 + 7)A. Thus, the existence and uniqueness of p* is established.

3. NUMERICAL EXAMPLES

In this section, we evaluate the values of po(t), p1(t), A(t), A(t), Ey(t) and
R(t). To estimate the parameters X, y and 8, we use the following data for times to
failure(Data 1) and the data for times to repair(Data 2), which are obtained under
the assumption that both times follow exponential distributions with means of 1/\
and 1/p, respectively.

Datal| 957 985 934 97.2 100.5
Data2 | 62 38 79 73 54

Based on these data, the MLE’s of A and p are obtained as 0.0103 and 0.163399,
respectively.

For Tables 1-4, we consider the case when the values of p, & and 7 are 0.0, 0.3,
0.6 and 1.0. Table 1 presents the behaviors of A(t) for various p when o = 0.3 and
7 = 0.5, and it shows the availability increases as the value of p becomes higher.

Table 2 shows that the availability decreases as the value of & increases for p = 0.9
and 7 = 0.5. Table 3 shows that the availability increases as the value of 7 decreases
for p = 0.9 and a = 0.3. Table 4 gives the value of pg(t), p1(t), A(t), A(t), Ew(t)
and R(t) for « = 0.3, p = 0.9 and 7 = 0.5. It is easy to obtain for a = 0.3, p = 0.9
and 7 = 0.5 that the MTTF is 119.458 and the steady-state availability is 0.98399.
Setting 7 = 1, the values coincides with the one discussed by Shin et al.(2001).
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Table 1. Availability of WSRS, A(t), for various p’s with o = 0.3 and 7 = 0.5.

Time (t)
0 Jo3 Jor [ 1 [ 38 [ 7
1.0 |} 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9992 | 0.9970
p | 0.6 || 1.0000 | 0.9984 | 0.9964 | 0.9950 | 0.9870 | 0.9765
0.3 || 1.0000 | 0.9973 | 0.9938 | 0.9914 | 0.9779 | 0.9613
0.0 || 1.0000 | 0.9961 | 0.9912 | 0.9877 | 0.9688 | 0.9462
Time (¢)
100 | 15 | 20 | 25 | 30 | oo
1.0 || 0.9955 | 0.9936 | 0.9923 | 0.9918 | 0.9915 | 0.9911
p | 0.6 | 0.9718 | 0.9674 | 0.9653 | 0.9642 | 0.9638 | 0.9632
0.3 || 0.9544 | 0.9483 | 0.9456 | 0.9443 | 0.9438 | 0.9433
0.0 {| 0.9372 | 0.9296 | 0.9265 | 0.9252 | 0.9246 | 0.9242
Table 2. Availability of WSRS, A(t), for various «’s with p = 0.9 and 7 = 0.5.
Time (t)
o [ 03 Jor | 1 | 3 | 7
1.0 || 1.0000 | 0.9994 | 0.9985 | 0.9979 | 0.9934 | 0.9856
a | 0.6 | 1.0000 | 0.9995 | 0.9988 | 0.9983 | 0.9950 | 0.9893
0.3 || 1.0000 | 0.9996 | 0.9991 | 0.9987 | 0.9961 | 0.9919
0.0 || 1.0000 | 0.9997 | 0.9993 | 0.9990 | 0.9971 | 0.9942
Time (t)
10 | 15 [ 20 [ 25 | 30 | oo
1.0 || 0.9811 | 0.9761 | 0.9734 | 0.9719 | 0.9711 | 0.9702
o | 0.6 || 0.9862 | 0.9826 | 0.9807 | 0.9796 | 0.9790 | 0.9785
0.3 || 0.9895 | 0.9870 | 0.9856 | 0.9848 | 0.9844 | 0.9840
0.0 || 0.9926 | 0.9909 | 0.9900 | 0.9895 | 0.9892 | 0.9889
Table 3. Availability of WSRS, A(t), for various 7’s with p = 0.9 and o = 0.3.
Time (t)
o0 Jo3 Jo7v [ 1 ] 3 | 7
1.0 || 1.0000 | 0.9996 | 0.9990 | 0.9986 | 0.9959 | 0.9910
7 | 0.6 || 1.0000 | 0.9996 | 0.9991 | 0.9987 | 0.9961 | 0.9917
0.3 || 1.0000 | 0.9996 | 0.9991 | 0.9987 | 0.9962 | 0.9922
0.0 |} 1.0000 | 0.9996 | 0.9991 | 0.9987 | 0.9964 | 0.9927
Time (t)
10 [ 15 ] 20 ] 25 | 30 | oo
1.0 |} 0.9883 | 0.9853 | 0.9836 | 0.9827 | 0.9822 | 0.9818
7 | 0.6 || 0.9893 | 0.9866 | 0.9852 | 0.9844 | 0.9840 | 0.9836
0.3 {} 0.9900 | 0.9877 | 0.9864 | 0.9857 | 0.9853 | 0.9849
0.0 || 0.9908 | 0.9888 | 0.9877 | 0.9871 | 0.9868 | 0.9840
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Table 4. Values of po(t), p1(t), A(t), A(t), Ey(t) and R(t) with & = 0.3, p = 0.9
and 7 = 0.5.

Time(d) | po() _pi() _A() ___A() _Eat) _R@)
3 0.9528 0.0433 0.9961 0.9980 2.994 0.9950
5 0.9323 0.0615 0.9938 0.9968 4.984 0.9906
7 0.9175 0.0744 0.9919 0.9957 6.970 0.9856
10 0.9025 0.0870 0.9895 0.9941 9.942 0.9766
20 0.8824 0.1032 0.9856 0.9907 19.81 0.9376
30 0.8778 0.1066 0.9844 0.9887 29.66 0.8883
40 0.8766 0.1075 0.9841 0.9876 39.50 0.8328
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