• Title/Summary/Keyword: Failure Mode and Effects Analysis

Search Result 203, Processing Time 0.032 seconds

Development of the FMECA Process and Analysis Methodology for the Railroad System (철도시스템 FMECA 수행 절차 및 분석 기법 개발에 관한 연구)

  • Park, Kwon-Shik;Kim, Tae-Woong;Jeong, Hyun-Yong;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.251-261
    • /
    • 2006
  • FMEA(Failure Mode and Effects) is a procedure for the analysis of a system to identify the potential failure modes, and their effects and causes to reduce or mitigate the critical effects of the system. Recently, FMEA is used in various industries and it is specialized in each industry. For instance, MIL-1629a in Military industry, SAE-J1739 in Automotive industry and other industry are using specialized FMEA method. Though Railroad industry requires the high reliability system, it does not have the FMEA method which is specialized to them. So in this paper, we examined the MIL-1629a, SAE-J1739, IEC-60812 and compared those standards. Furthermore, we propose the FMEA method that is specialized to the railroad system.

  • PDF

Non-Linear FEM Analysis Study of the Peeling Failure of the RC Beams Strengthened by GFRP (유리섬유쉬트로 휨보강한 보의 박리파괴 거동에 관한 비선형 FEM 해석)

  • 강인석;최기선;유영찬;김긍환;이한승;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.335-338
    • /
    • 2003
  • Flexural test and parametric study by FEM analysis on 6.0m long reinforced concrete beams strengthened by GFRP are reported in these tests. The selected variables are strengthened plate length, plate thickness. The effects of these variables are discussed. The results generally indicate that the flexural strength of strengthened beams is increased. The results of FEM analysis show that the more strengthening GFRP is the more stress of GFRP is decrease when failure mode is peeling failure.

  • PDF

Development of a Failure Mode and Effects Analysis Based Risk Assessment Tool for Information Security

  • Lai, Lotto Kim Hung;Chin, Kwai Sang
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.87-100
    • /
    • 2014
  • Risk management is recognized as a significant element in Information Security Management while the failure mode and effects analysis (FMEA) is widely used in risk analysis in manufacturing industry. This paper aims to present the development work of the Information Security FMEA Circle (InfoSec FMEA Circle) which is used to support the risk management framework by modifying traditional FMEA methodologies. In order to demonstrate the "appropriateness" of the InfoSec FMEA Circle for the purposes of assessing information security, a case study at Hong Kong Science and Technology Parks Corporation (HKSTP) is employed. The "InfoSec FMEA Circle" is found to be an effective risk assessment methodology that has a significant contribution to providing a stepwise risk management implementation model for information security management.

Analysis of Effects of Chemotherapy using Failure Mode and Effect Analysis (FMEA) on Patient Safety and Safe Nursing (고장유형영향분석을 활용한 항암화학요법의 환자안전간호 효과분석)

  • Yang, Nam Young;Lee, Mi Hyang
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.21 no.3
    • /
    • pp.254-262
    • /
    • 2015
  • Purpose: This study was done to apply failure mode & effect analysis (FMEA) to chemotherapy in order to reduce prescribing, dispensing and administering errors related to treatment and provide patients with a safe medical environment. Methods: A one group pre-post test design was used to verify the effects using the tool for FMEA in chemotherapy. Results: There was a statistically significant decrease in prescribing errors from 11.47% to 3.18%; administering errors decreased but they were not statistically significant. In a addition, there was no change in dispensing errors. Conclusion: The results show that FMEA removed risk factors that might occur during the process of chemotherapy and that it was an effective tool for prevention of negligent accident occurring in actual patients.

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Expert Opinion Elicitation and Expert System for FMECA using Fuzzy Theory (퍼지이론을 이용한 전문가 의견 도출법과 FMECA 전문가시스템)

  • Kim, Dong-Jin;Byeon, Yung-Tae;Kim, Hyeong-Cheol;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.261-262
    • /
    • 2008
  • Failure Mode Effects and Criticality Analysis (FMECA) evaluates criticality and severity of each failure mode. Generally, those indices are determined subjectively by experts and operators. However, this process has no choice but to include uncertainty. In this paper, a method for eliciting expert opinions considering its uncertainty is proposed to evaluate the criticality and severity. In addition, a fuzzy expert system is constructed to determine the crisp value of risk level for each failure mode. The results are worth considering while deciding the proper policies for each component of the system.

  • PDF

Design of reliability critical system using axiomatic design with FMECA

  • Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process.

Case Study of Electronic Fuel Injection Powertrain System FMEA Using Model-Based Fault Injection technique (모델 기반 결함 주입 기법을 이용한 Electronic Fuel Injection 전장 시스템 FMEA 사례연구)

  • Ye-ju Kim;Ye-won Na;Dong-min Lee;Ju-Young Kim;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.436-446
    • /
    • 2023
  • In the field of safety-critical systems, analyzing the effects of various failure factors (failure modes) is essential through Failure Mode and Effects Analysis (FMEA). However, with the increasing importance of software in systems, applying FMEA analysis to the design phase has become challenging. This paper proposes the use of Automatic FMEA, which can automatically perform FMEA using model-based design techniques, and presents a case study of FMEA for automotive engines. A comparison is made between the model-based Automatic FMEA analysis tool and existing FMEA tools. The study aims to demonstrate the performance of the Automatic FMEA analysis tool and propose future research plans.

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.

Systems Engineering approach to Reliability Centered Maintenance of Containment Spray Pump (시스템즈 엔지니어링 기법을 이용한 격납용기 살수펌프의 신뢰기반 정비기법 도입 연구)

  • Ohaga, Eric Owino;Lee, Yong-Kwan;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.