• 제목/요약/키워드: Failure Mode and Effects Analysis

검색결과 203건 처리시간 0.033초

FMEA에서 공통원인고장이 포함될 경우의 고장원인에 대한 위험평가 절차 (A Risk Evaluation Procedure in FMEA for Failure Causes including Common Cause Failures)

  • 김병남;권혁무;홍성훈;이민구
    • 품질경영학회지
    • /
    • 제46권2호
    • /
    • pp.327-338
    • /
    • 2018
  • Purpose: A risk evaluation procedure is proposed for common failure causes in FMEA(Failure Mode and Effects Analysis). The conventional FMEA does not provide a proper means to compare common failure causes with other failure causes. This research aims to develop a risk evaluation procedure in FMEA where common failure causes and other failure causes exist together. Methods: For each common failure cause, the effect of each combination of its resulting failures is recommended to be reevaluated considering their interactive worsening effect. And the probability that each combination of failures is incurred by the same common cause is also considered. Based on these two factors, the severity of each common cause is determined. Other procedures are similar to the conventional method. Results: The proposed procedure enables to compare and prioritize every failure cause. Thus, the common causes, each of which incurring two or more failures, and other causes, each of which is corresponding to one failure, can be fairly compared. Conclusion: A fair and proper way of comparing the common failure causes and other causes is provided. The procedure is somewhat complicated and requires more works to do. But it is worth to do.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구 (Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints)

  • 박범철;전흥재;박종찬
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.1-5
    • /
    • 2019
  • 본 연구는 접착조인트의 파손모드 및 파손강도 연구를 위해 단일 겹침 시편(Single lap shear joint)을 이용하여 해석을 실시하였다. 알루미늄과 스틸, Araldite 접착제를 이용, 시편을 제작하여 인장시험을 진행하였으며 시험데이터를 이용, 유한요소해석 결과와 비교 분석하였다. 알루미늄과 스틸, 접착제 모두 비선형해석을 통해 정확한 거동을 묘사하고자 하였다. 시험결과 파단강도는 Overlap length와 Width가 증가함에 따라 선형적으로 증가하였다. 또한 이종재료 조인트의 경우 동종재료 조인트와 비교 시 10~17% 정도의 파손강도 증가를 보였다. 이는 강성이 강한 스틸을 함께 사용함으로써 판재의 굽힘변형이 줄어들고 이를 통해 본드의 응력집중을 막는 효과를 가져왔기에 나타난 현상으로 분석된다. 유한요소해석을 통한 응력분포 및 변형률 분포를 분석한 결과 동종재료의 경우 본드 양 끝단, 이종재료의 경우 강성이 약한 판재와 가까운 부분에서 집중이 발생하였다. 응력집중 및 파손의 주요 인자를 확인하기 위해 본드의 각 성분 별 응력 값을 측정해 본 결과 1-3방향 전단응력 이 파손의 가장 큰 인자로 분석되었다.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

Direct displacement-based seismic assessment of concrete frames

  • Peng, Chu;Guner, Serhan
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.355-365
    • /
    • 2018
  • Five previously-tested reinforced concrete frames were modelled using a nonlinear finite element analysis procedure to demonstrate the accurate response simulations for seismically-deficient frames through pushover analyses. The load capacities, story drifts, and failure modes were simulated. This procedure accounts for the effects of shear failures and the shear-axial force interaction, and thus is suitable for modeling seismically-deficient frames. It is demonstrated that a comprehensive analysis method with a capability of simulating material constitutive response and significant second-order mechanisms is essential in achieving a satisfactory response simulation. It is further shown that such analysis methods are invaluable in determining the expected seismic response, safety, and failure mode of the frame structures for a performance-based seismic evaluation. In addition, a new computer program was developed to aid researchers and engineers in the direct displacement-based seismic design process by assessing whether a frame structure meets the code-based performance requirements by analyzing the analysis results. As such, the proposed procedure facilitates the performance-based design of new buildings as well as the numerical assessment and retrofit design of existing buildings. A sample frame analysis was presented to demonstrate the application and verification of the approach.

K21 보병전투차량에 FMEA 적용을 통한 RPN 평가방법 재정립 (Reestablishment of RPN Evaluation Method in FMEA Procedure for K21)

  • 이창희;양경우;김상부
    • 품질경영학회지
    • /
    • 제40권3호
    • /
    • pp.306-315
    • /
    • 2012
  • Purpose: To ensure good quality munitions, we require quantitative risk management and optimal risk management of system characteristics. Methods: Failure mode and effects analysis (FMEA) is a widely used technique to assess or to improve reliability of products at early stage of design and development. Traditionally, the prioritization of failures for corrective actions is performed by developing a risk priority number (RPN). Results: This paper reestablishes an effective methodology for prioritization of failure modes in FMEA procedure. Revised evaluation criteria of RPN are devised. Conclusion: To verify the proposed methodology, it is applied to RPN evaluation for K21 infantry combat vehicle.

가전용 모터의 FMEA 실시 과정에서의 RPN 평가방법 재정립 (Reestablishment of RPN Evaluation Method in FMEA Procedure for Motors in Household Appliances)

  • 김상연;김호균;윤원영
    • 품질경영학회지
    • /
    • 제35권1호
    • /
    • pp.1-9
    • /
    • 2007
  • Failure mode and effects analysis (FMEA) is a widely used technique to assess or to improve reliability of products at early stage of design and development. Traditionally, the prioritization of failures for corrective actions is performed by developing a risk priority number (RPN). In practice, due to insufficient evaluation criteria specific to related product and processes, RPN is not properly evaluated. This paper reestablishes an effective methodology for prioritization of failure modes in FMEA procedure. Revised evaluation criteria of RPN are devised and a refined FMEA sheet is Introduced. To verify the proposed methodology, it is applied to RPN evaluation for motors in household appliances.

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

HBM ESD 현상의 혼합모드 과도해석 (Mixed-Mode Transient Analysis of HBM ESD Phenomena)

  • 최진영;송광섭
    • 대한전자공학회논문지SD
    • /
    • 제38권1호
    • /
    • pp.1-12
    • /
    • 2001
  • 2차원 소자 시뮬레이터를 이용하는 혼합모드 과도해석을 통해, NMOS 트랜지스터를 ESD 보호용 소자로 사용하는 CMOS 칩에서의 HBM ESD 현상에 대한 과도해석 방법론을 제시하고 HBM 방전 미케니즘에 대해 상세히 분석하였고, 보호용 소자 내에서의 2차항복 현상을 성공적으로 시뮬레이션하여 소자 파괴에 이르는 미케니즘을 설명하였다., 보호용 소자 구조의 변화가 방전 특성에 미치는 영향을 조사하기 위해 DC 해석 결과와 혼합모드 과도해석 결과를 비교 분석하였고, 분석 결과를 근거로 하여 HBM ESD에 보다 견고한 보호용 소자의 구조 설계에 대해 논의하였다.

  • PDF

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu;Dongang Li;Feng Yu;Yuan Fang;Guosheng Xiang;Zilong Li
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.19-36
    • /
    • 2023
  • An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.