• 제목/요약/키워드: Failure Effect Probability

검색결과 176건 처리시간 0.024초

P-PIE 프로그램을 이용한 배관에서의 누설확률 평가 (Evaluation of Leak Probability in Pipes using P-PIE Program)

  • 박재학;신창현
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.1-8
    • /
    • 2017
  • P-PIE is a program developed to estimate failure probability of pipes and pressure vessels considering fatigue and stress corrosion crack growth. Using the program, crack growth simulation was performed with an initially existing crack in order to examine the effects of initial crack depth distribution on the leak probability of pipes. In the simulation stress corrosion crack growth was considered and several crack depth distribution models were used. From the results it was found that the initial crack depth distribution gives great effect on the leak probability of pipes. The log-normal distribution proposed by Khaleel and Simonen gives lower leak probability compared other exponential distribution models. The effects of the number and the quality of pre-service and in-service inspections on the leak probability were also examined and it was recognized that the number and the quality of pre-service and in-service inspections are also give great effect on the leak probability. In order to reduce the leak probability of pipes in plants it is very important to improve the quality of inspections. When in-service inspection is performed every 10 years and the quality of inspection is above the very good level, the leak probability shows nearly constant value after the first inspection for an initially existing crack.

기하학적 초기형상결함을 갖는 보강 원통의 충격좌굴 신뢰성 해석 (Impact Buckling Reliability Analysis of Stiffened Cylinder With Initial Geometric Imperfection)

  • 김두기
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.735-747
    • /
    • 1996
  • In this paper, buckling reliability analyses of stiffened cylinder with random initial geometric imperfection under axial impact load are performed by the combined response surface method. The effect of random geometric imperfection on the failure probability and reliability is recognized quantitatively. Buckling reliability decreases with the increase of mean value, cov of initial geometric imperfection under the same external load. Buckling probability under impact load is greater than those under static load with the same condition. From the probabilistic characteristics of imapct buckling load, relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. And those results can be used to determine the range of required safety parameter and acceptable imperfaction.

  • PDF

균열 검사 결과를 고려한 선체 잔류 피로 수명의 확률론적 예측 (Stochastic Remaining Fatigue Life Assessment Considering Crack Inspection Results)

  • 박명진;김유일
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In general, an inspection schedule is established based on the long-term fatigue life during the design stage. However, in the design stage, it is difficult to clearly identify the uncertainty factors affecting long-term fatigue life. In this study, the probabilistic fatigue life assessment was conducted in accordance with the methodology of DNV-GL. Firstly, The initial crack distribution estimated through the initial crack propagation analysis was updated by reflecting the results of crack inspection. Secondly, the updated crack distribution was compared with the initial crack distribution, and the probability of failure was updated with the effect of crack inspection.

Reliability sensitivity analysis of dropped object on submarine pipelines

  • Edmollaii, Sina Taghizadeh;Edalat, Pedram;Dyanati, Mojtaba
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.135-155
    • /
    • 2019
  • One of the safest and the most economical methods to transfer oil and gas is pipeline system. Prediction and prevention of pipeline failures during its assessed lifecycle has considerable importance. The dropped object is one of the accidental scenarios in the failure of the submarine pipelines. In this paper, using Monte Carlo Sampling, the probability of damage to a submarine pipeline due to a box-shaped dropped object has been calculated in terms of dropped object impact frequency and energy transfer according to the DNV-RP-F107. Finally, Reliability sensitivity analysis considering random variables is carried out to determine the effect intensity of each parameter on damage probability. It is concluded that impact area and drag coefficient have the highest sensitivity and mass and add mass coefficient have the lowest sensitivity on probability of failure.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

디젤발전기 여자시스템의 고장확률 분석에 관한 연구 (Evaluation of Probability of Failure on Demand (PFD) for Emergency Diesel Generator Excitation Control System)

  • 이주현;임익헌;류호선;허태영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1934-1935
    • /
    • 2007
  • 본 논문은 원자력발전소 안전계통인 비상전원 공급용 디젤발전기의 여자시스템에 대해서 신뢰성 불럭선도를 이용하여 시스템을 모델링하고, 신뢰성 분석을 수행하고 그 결과 기동요구시 실패확률을 산출하는 방법과 결과를 기술하였다. 비상디젤발 전기 여자시스템을 구성하는 모든 부품의 고장률을 Telcordia SR-332 기준서의 부품수 방법을 이용하여 분석하고 FMEA (Failure Mode Effect Analysis)를 수행하며 IEC 61508에서 제시하고 있는 기동요구 시 실패확률(Probability of Failure on Demand, PFD)을 산출하였다.

  • PDF

Reliability sensitivities with fuzzy random uncertainties using genetic algorithm

  • Jafaria, Parinaz;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.413-431
    • /
    • 2016
  • A sensitivity analysis estimates the effect of the change in the uncertain variable parameter on the probability of the structural failure. A novel fuzzy random reliability sensitivity measure of the failure probability is proposed to consider the effect of the epistemic and aleatory uncertainties. The uncertainties of the engineering variables are modeled as fuzzy random variables. Fuzzy quantities are treated using the ${\lambda}$-cut approach. In fact, the fuzzy variables are transformed into the interval variables using the ${\lambda}$-cut approach. Genetic approach considers different possible combinations within the search domain (${\lambda}$-cut) and calculates the parameter sensitivities for each of the combinations.

FMEA에서 고장 심각도의 탐지시간에 따른 위험성 평가 (Risk Evaluation in FMEA when the Failure Severity Depends on the Detection Time)

  • 장현애;윤원영;권혁무
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.136-142
    • /
    • 2016
  • The FMEA is a widely used technique to pre-evaluate and avoid risks due to potential failures for developing an improved design. The conventional FMEA does not consider the possible time gap between occurrence and detection of failure cause. When a failure cause is detected and corrected before the failure itself occurs, there will be no other effect except the correction cost. But, if its cause is detected after the failure actually occurs, its effects will become more severe depending on the duration of the uncorrected failure. Taking this situation into account, a risk metric is developed as an alternative to the RPN of the conventional FMEA. The severity of a failure effect is first modeled as linear and quadratic severity functions of undetected failure time duration. Assuming exponential probability distribution for occurrence and detection time of failures and causes, the expected severity is derived for each failure cause. A new risk metric REM is defined as the product of a failure cause occurrence rate and the expected severity of its corresponding failure. A numerical example and some discussions are provided for illustration.

Informational Justice and Post-recovery Satisfaction in E-Commerce: The Role of Service Failure Severity on Behavioral Intentions

  • Kussusanti, Susanti;Tjiptoherijanto, Prijono;Halim, Rizal Edy;Furinto, Asnan
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권1호
    • /
    • pp.129-139
    • /
    • 2019
  • The purpose of this research is to examine the effect of informational justice on post-recovery satisfaction, and the effect of post-recovery satisfaction on behavioral intentions in e-commerce, including further investigate the moderating effect of service failure severity. Using quantitative method, the population of this research are online customers in Indonesia, with non-probability sampling that will be done by purposive sampling method based on predetermined criterias, which are customers who were doing transactions in the Business to Consumer (B2C) online sites, experienced service failure in the last 6 months, submitted a complaint, and received a response. Sample of 317 online customers were gathered and analyzed using the Structural Equation Modeling. The results of this study indicated that 5 hypothesis are supported with data. As a conclusion, informational justice and post-recovery satisfaction has positive effect, while service failure severity acts as a moderator between post-recovery satisfaction and behavioral intentions. As a managerial implication, online store management needs to ensure the informational justice to make a post-recovery satisfaction. Therefore, online store management needs to ensure the informational justice to make a post-recovery satisfaction, increase repurchase and positive e-word of mouth intention, also work harder to recover services, especially in high service failure severity condition.

균등 표면 염화물량을 고려한 시간 의존적 내구적 파괴확률 해석기법 (Analysis Technique on Time-dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content)

  • 이학수;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권2호
    • /
    • pp.46-52
    • /
    • 2017
  • 염해에 노출된 콘크리트 구조물의 내구수명 평가는 매우 중요하므로 최근들어 결정론적 및 확률론적 방법을 통하여 내구수명을 평가하는 시도가 이루어지고 있다. Fick's 2nd 법칙에 근거한 내구수명 평가방법은 표면 염화물량과 확산계수의 시간의존성을 고려하여 합리적인 설계를 수행하고 있으나, 확률론적 방법에서는 이러한 영향이 고려되지 않고 있다. 본 논문에서는 시간에 따라 증가하는 표면염화물량을 유효 표면염화물량으로 고려한 뒤 시간의존성 확산계수를 고려하여 내구적 파괴확률을 도출할 수 있는 해석기법을 제안하였다. 표면염화물에 도달하는 기간을 10~30년으로, 표면염화물량을 $5.0{\sim}10.0kg/m^3$으로 변화시키면서 내구적 파괴확률을 평가하고 내구수명의 변화를 분석하였다. 제안된 기법은 결정론적 내구수명 평가방법의 해석조건을 동일하게 적용시키면서 설계인자의 확률 변동성을 고려할 수 있으므로 과다한 설계를 방지함으로서 합리적인 설계기법으로 적용할 수 있다.