• 제목/요약/키워드: Failure Criterion

검색결과 702건 처리시간 0.021초

조선 해양 구조물용 강재의 소성 및 파단 특성 III: 파단 변형률에 관한 실험적 연구 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain)

  • 정준모;심천식;김경수
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.53-65
    • /
    • 2011
  • This is the third of several companion papers dealing with the derivation of material constants for ductile failure criteria under hydrostatic stress. It was observed that the ultimate engineering stresses and elongations at fracture from tensile tests for round specimens with various notch radii tended to increase and decrease, respectively, because of the stress triaxiality. The engineering stress curves from tests are compared with numerical simulation results, and it is proved that the curves from the two approaches very closely coincide. Failure strains are obtained from the equivalent plastic strain histories from numerical simulations at the time when the experimental engineering stress drops suddenly. After introducing the new concept of average stress triaxiality and accumulated average strain energy, the material constants of the Johnson-Cook failure criterion for critical energies of 100%, 50%, and 15% are presented. The experimental results obtained for EH-36 steel were in relatively good agreement with the 100% critical energy, whereas the literature states that aluminum fits with a 15% critical energy. Therefore, it is expected that a unified failure criterion for critical energy, which is available for most kinds of ductile materials, can be provided according to the used materials.

복합하중에 의한 천연가스 배관의 파손확률 평가 (Failure Probability Assessment of Natural Gas Pipeline under Combined Stresses)

  • 백종현;장윤찬;김익중;김철만;김영표
    • 한국가스학회지
    • /
    • 제24권4호
    • /
    • pp.10-17
    • /
    • 2020
  • 신뢰도 기반 평가법은 천연가스배관의 기하학적 형상 변화, 기계적 특성, 하중변화 및 운영조건을 평가 인자로 사용하여 천연가스배관의 건전성 평가 관리의 신뢰도를 향상시킬 수 있다. 구조신뢰성 평가 시 배관의 파손확률은 외부하중에 대한 배관재료의 저항성과의 관계에 의해 평가된다. COMREL 프로그램을 사용하여 내압, 열응력 및 굽힘응력과 같은 복합응력에 의한 천연가스배관의 파손확률을 평가했다. 천연가스배관의 파손확률 평가 시 매설깊이는 1.5~30m, 차량바퀴하중은 2.5~20톤, 온도차는 45℃, 운전압력은 6.86MPa 그리고 토양밀도는 1.8kN/㎥를 사용하였다. 천연가스배관의 파손확률은 Von-Mises 응력 기준에 의해 복합응력 하의 최대허용응력 기준으로 평가하였다.

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • 제8권5호
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.

입방체형삼축시험에 의한 모래의 응력 -변형률 거동 (The Stress Strain Behavior of Sand in Cubical Triaxial Tests)

  • 남정만;홍원표
    • 한국지반공학회지:지반
    • /
    • 제9권4호
    • /
    • pp.83-92
    • /
    • 1993
  • 세 주응력을 서로 독립적으로 조절할 수 있는 입방체형삼축시험기를 이용하여 모래에 대한 일련의 배수삼축시험이 실시되었다. 실험결과 모래의 응력 -변형률거동과 강도는 중간주응력의 크기에 따라 각기 다른 특성을 보이는 것으로 나타났다. 우선 최소주응력이 일정한 상태에서 중간 주응력이 증가함에 따라 파괴시의 축변형률 e1은 감소하는 경향이 있으며 체적팽창현상은 증가 하는 것으로 나타나고 있다. 그리고 내부마찰각은 축차응력비 b가 증가함에 따라 증가하다 b가 1 부근에 접근하면서 약간 감소하는 경향을 보이고 있다. 한편 Mohrfoulomb규준은 모래의 파괴 강도를 과소산정하는 경향을 보이고 있으나 Lade의 파괴규준은 시험치와 좋은 일치를 보이고 있다.

  • PDF

Cutout shape and size effects on response of quasi-isotropic composite laminate under uni-axial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.335-348
    • /
    • 2010
  • Cutouts are often provided in structural and aircraft components for ventilation, for access, inspection, electric lines and fuel lines or sometimes to lighten the structure. This paper addresses the effects of cutout shape (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) and size on buckling and postbuckling response of quasi-isotropic (i.e., $(+45/-45/0/90)_{2s}$) composite laminate under uni-axial compression. The finite element method is used to carry out the investigation. The formulation is based on first order shear deformation theory and von Karman's assumptions are used to incorporate geometric nonlinearity. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. It is observed that for the smaller size cutout area there is no significant effect of cutout shape on load-deflection response of the laminate. It is also concluded that the cutout size has substantial influence on the buckling and postbuckling response of the laminate with elliptical-horizontal cutout, while this effect is observed to be the least in case of laminate with elliptical-vertical cutout.

A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass

  • Zou, Jin-Feng;Yang, Tao;Ling, Wang;Guo, Wujun;Huang, Faling
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.225-234
    • /
    • 2019
  • A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass is investigated, which is compatible with Mohr-Coulomb and generalized Hoek-Brown failure criteria. Based on finite difference method, plastic region is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium and compatibility equations, the material parameters of the rock or soil mass are assumed to be the same in each ring. For the strain-softening behavior, the strength parameters are assumed to be a linear function of deviatoric plastic strain (${\gamma}p^*$) for each ring. Increments of stress and strain for each ring are calculated with the finite difference method. Assumptions of large-strain for soil mass and small-strain for rock mass are adopted, respectively. A new numerical stepwise approach for limited pressure and plastic radius are obtained. Comparisons are conducted to validate the correctness of the proposed approach with Vesic's solution (1972). The results show that the perfectly elasto-plastic model may underestimate the displacement and stresses in cavity expansion than strain-softening coefficient considered. The results of limit expansion pressure based on the generalised H-B failure criterion are less than those obtained based on the M-C failure criterion.

점진적 파손해석 기법을 이용한 일방향-평직 혼합 적층 복합재 체결부의 강도 (Strength of UD-Fabric Hybrid Laminated Composite Joints Based on Progressive Failure Analysis)

  • 신소영;안현수;권진회
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.17-21
    • /
    • 2002
  • A finite element method based on the two-dimensional progressive failure analysis is presented for characterizing the strength and failure of the unidirectional-fabric hybrid laminated composite joints under pin loading. The 8-node laminated shell element is incorporated in the updated Lagrangian formulation. Various failure criteria including the maximum stress, Tsai-Wu, Yamada-Sun, and combinations of them are used in conjunction with the complete unloading stiffness degradation method. For the verification, joint tests are conducted for the specimens with various geometries. Although there are some differences depending on the geometry, the finite element model using the Yamada-Sun or the combined Yamada-Sun and Tsai-Wu criterion predicts the failure strength best.

  • PDF

붕괴된 암반사면에서 역해석에 의한 내부마찰각의 추정 (Estimation of Internal Friction Angle by the Back Analysis on Collapsed Rock Slope)

  • 이달원;김갑중
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.172-182
    • /
    • 2003
  • In this study, the back analysis was performed by means of stereo-net, plane failure and block failure method to collapsed fields among the rock slopes designed by standardized criterion, and the internal frictions from the back analysis were compared with those used to reinforcement design. It was concluded that in the result of the analysis by means of stereo net, plain failure and block failure methods, the internal frictions used to re-design of collapsed slope underestimated 10$^{\circ}$, 5$^{\circ}$ and 10$^{\circ}$ in average. At present, the internal friction on the design is used the experience value according to the state of weathering, but internal friction angle by the back analysis on collapsed slope with various methods were more reliable values than those from the present method. And it was concluded that re-design was made extravagantly because the internal friction used to re-design for reinforcement of the collapsed slope was less than back analysis.

재료비선형을 고려한 일방향-평직 혼합 적층 복합재 체결부의 점진적 파손해석 (Progressive Failure Analysis of UD-Fabric Hybrid Laminated Composite Joints Considering Material Nonlinearity)

  • 최정석;신소영;안현수;권진회
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.79-82
    • /
    • 2002
  • A finite element method based on the two-dimensional progressive failure analysis considering material nonlinearity is presented for characterizing the strength and failure of the unidirectional-fabric hybrid laminated composite joints under pin loading. The 8-node laminated shell element is incorporated in the updated Lagrangian formulation. Failure criteria including the Maximum Stress and Tsai-Wu are used in conjunction with the complete unloading stiffness degradation method. For the verification, joint tests are conducted for the specimens with two different ply-number ratios of UD composite to fabric composite. Although there are some differences depending on ply-number ratios, the finite element model using the maximum stress criterion considering nonlinear material behavior predicts the failure strength best.

  • PDF