• Title/Summary/Keyword: Failure, Reliability Analysis

Search Result 1,458, Processing Time 0.027 seconds

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

Reliability-Based Optimization using Sensitivity Analysis of Reliability Index (신뢰성 지수의 민감도 해석을 이용한 신뢰성에 기초한 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.101-108
    • /
    • 2000
  • An optimum design algorithm using efficient reanalysis is proposed for reliability-based optimization problems formulated as the minimization of initial cost and expected failure cost with reliability constraints. The reliability-based optimization is high cost to evaluate objective function and constraints needed reliability analysis. Therefore the sensitivity analysis of reliability index for approximated reanalysis is necessary. In this paper, three solution approaches are suggested and tested. The approaches include : (1) sensitivity analysis using finite difference; (2) sensitivity analysis using automatic differentiation (AD); and (3) sensitivity analysis with respect to intermediate variables using AD. Numerical example is optimized to show the reliability and effectiveness of the new algorithm.

  • PDF

Reliability analysis for substation based on the failure rate data the facilities (설비의 고장을 데이터를 이용한 변전소 신뢰도 분석 연구)

  • Lee, Y.H.;Baek, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.29-31
    • /
    • 2006
  • The most crucial requirement of a power system is o supply quality electric energy to customers without interrution. This problem is directly related to reliability of power system. Reliability assessment of power system has been an important topic for the past several decades. This paper deals with reliability assessment of a 154kV power substation n KEPCO. In his paper, exponential distribution is used to calculate reliablity index. The failure rate data that are utilited for reliablity index based on the realistic system. Also, FTA(Fault Tree Analysis) is used to compute substation reliablity

  • PDF

Basic Study on the Reliability Analysis of Structural Systems (시스템 신뢰성 해석에 관한 기초연구)

  • Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.145-157
    • /
    • 1989
  • 본 논문의 주목적은 불연속 또는 연속계 구조물의 시스템 신뢰성해석(system reliability analysis)을 위한 보다 일반적인 방법을 소개하는데 있다. 본 논문에서는, 확대하중증분법(extended incremental load method)이라고 불리우는데, 지금까지의 신뢰성 해석법 중 종래의 하중증분법이 갖는 단점을 보완하고, 여러 형태의 하중이 작용하는 구조물에 대해, 부재의 파괴후 거동(post-ultimate behaviour)을 다른 방법보다 더 실제적으로 고려할 수 있는 장점을 갖도록 개발한 것이다. 본 방법의 또 하나의 장점은 구조설계시 사용하는 강도공식(strength formula) 을 시스템 신뢰성 해석에서 직접 이용할 수 있다는 점이다. 이 방법은 부유식 해양구조물 같은 연속계 구조물의 시스템 신뢰성 해석을 위해 개발되었는데, 이 논문에서는 실제 구조물은 다루지 않고, 방법의 정당성과 아울러 수정된 안전여유식의 적용가능성을 보여주는 것에 중점을 두었다. 본 논문의 부유식 해양구조물들에 적용한 결과는 후일 발표할 예정이다.

  • PDF

Reliability Analysis and Preventive Maintenance for Fatigue Life of End Beam for Uncovered Freight Car (무개화차용 엔드빔의 피로수명에 대한 신뢰성 분석과 계획예방정비)

  • Baek Seok Hem;Jeon Joo Heon;Lee Kyoung Young;Cho Seok Swoo;Joo Won Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.495-502
    • /
    • 2005
  • Increased cumulative running times of railroad vehicle brings out such degradation as wear and fatigue. It doesn't adapt corrective maintenance which repairs a poor part after a trouble but use preventive maintenance which fixes a bad part before a trouble. There were a few researches for preventive maintenance such as inspect affairs and facilities management. They couldn't estimate the operation reliability on railroad vehicle. Therefore, this study proposes the preventive maintenance procedure that predict repair period of end beam fur uncovered freight car using reliability function and instantaneous failure rate on the basis of fatigue test and load history data.

Application of Reliability Centered Maintenance for Waterworks after Constructing CMMS (Computerized Maintenance Management System) (유지관리업무 시스템(CMMS) 구축에 따른 수력발전 및 수도설비를 위한 신뢰도 기반 유지보수(RCM) 적용)

  • Lee, Sung-Hoon;Lee, Jong-Bum;Kim, Jeong-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.424-425
    • /
    • 2008
  • This paper presents application of RCM(Reliability Centered Maintenance) in waterworks system. The reliability-based probability model for predicting the failure probability is established and FTA(Fault Tree Analysis) is proposed to considering RCM. To calculate failure probability, Weibull distribution is usually used due to age related reliability. FTA is an engineering analysis which is using logic symbols. The real historical data of CMMS(Computerized Maintenance Management System) make full use of case study for waterworks system. Consequently, the RCM would be likely to permit utilities to reduce overall costs in maintenance and improve the total benefit.

  • PDF

A Reliability Analysis of CVCS (노냉각수 제어계통의 신뢰도해석에 관한연구)

  • Chung Chan Lee;Byung Soo Lee;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.11-22
    • /
    • 1983
  • The reliability of the Chemical and Volume Control System has been analyzed in a pressurized water reactor. The boration failure was taken to be the top event for this reliability analysis. A detailed fault tree was constructed and the minimal cut sets were derived. It was computed that the unavailability of the Chemical and Volume Control System due to boration failure was 1.497$\times$10$^{-5}$ during plant operation. It was found that the reliability of boric acid transfer pumps were the most important factors in the availability of the Chemical and Volume Control System. As expected, human errors also introduce the high system unavilability.

  • PDF

Failure-Time Estimation from Nonlinear Random-Coefficients Model: PDP Degradation Analysis (PDP 열화분석 예제를 통한 랜덤계수모델에서의 고장시간분포 추정)

  • Bae, Suk-Joo;Kim, Seong-Joon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.181-191
    • /
    • 2006
  • As an alternative to traditional life testing, degradation tests can be effective in assessing product reliability when measurements of degradation leading to failure can be observed. This article proposes a new model to describe the nonlinear degradation paths caused by nano-contamination for plasma display panels (PDPs) : a bi-exponential model with random coefficients. A sequential likelihood ratio test was executed to select random effects in the nonlinear model. Analysis results indicate that the reliability estimation can be improved substantially by using the nonlinear random-coefficients model to incorporate both inherent degradation characteristics and contamination effects of impurities for PDP degradation paths.

  • PDF

Effect of Boundary Conditions on Failure Probability of Buried Steel Pile (매설된 강 파일의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.204-213
    • /
    • 2003
  • A survey for finding corrosion examples was performed on the underground steel piles buried for 19 years in the area of iron and steel making factory near Young-il bay. A failure probability model, which can be used to check the reliability of the corrosive mechanical element, based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as temperature change, soil-friction, internal pressure, earthquake, loading of soil, traffic loads and corrosion on failure probability of the buried steel piles are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

Stochastic analysis of a non-identical two-unit parallel system with common-cause failure, critical human error, non-critical human error, preventive maintenance and two type of repair

  • El-Sherbeny, M.S.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.2
    • /
    • pp.123-138
    • /
    • 2010
  • This paper investigates a mathematical model of a system composed of two non-identical unit parallel system with common-cause failure, critical human error, non-critical human error, preventive maintenance and two type of repair, i.e. cheaper and costlier. This system goes for preventive maintenance at random epochs. We assume that the failure, repair and maintenance times are independent random variables. The failure rates, repair rates and preventive maintenance rate are constant for each unit. The system is analyzed by using the graphical evaluation and review technique (GERT) to obtain various related measures and we study the effect of the preventive maintenance preventive maintenance on the system performance. Certain important results have been derived as special cases. The plots for the mean time to system failure and the steady-state availability A(${\infty}$) of the system are drawn for different parametric values.

  • PDF