• Title/Summary/Keyword: Factor of Safety

Search Result 4,662, Processing Time 0.048 seconds

Effects of Food-related Lifestyle on the Importance of Selected Attributes of Diet Lunch Box (식생활 라이프스타일 유형이 다이어트 도시락 선택속성의 중요도에 미치는 영향)

  • Kim, Binna;Sim, Ki Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.413-426
    • /
    • 2017
  • The study subjects were 302 adult males and females aged more than 20 years living in the metropolitan area of South Korea. This study was conducted to obtain baseline data to establish proper development and marketing strategies by examining the effects of food-related lifestyles on the importance of diet, purchasing behavior towards diet lunch boxes, and their selected attributes such as menu, packaging, and services. With respect to food-related lifestyle, a cluster analysis was performed by using five factors such as convenience factor, health factor, safety factor, taste factor, and economy factor obtained from factor analysis to derive the economy type, the taste and economy type, the convenience type, the safety type, and the health type. As a result, the respondents regarded 'food hygiene (4.59)', 'freshness (4.47)', 'taste (4.28)', and 'nutrient balance (4.19)' as the selected attributes of diet lunch box menus. Moreover, the importance of diet lunch box menus (${\beta}=0.179$) was increased with increasing safety orientation. 'Shelf life label (4.42)' was the most important selected attribute of diet lunch boxes, followed by 'ingredient label (4.19)', 'nutrition facts label (4.16)', and 'indication of origin (4.15)'. In particular, the importance of packaging for diet lunch boxes (${\beta}=0.203$) was increased with increasing safety orientation. With respect to the selected attributes of services in purchasing diet lunch boxes, 'provision of personalized menus (4.07)' was the most important, and the importance of services for diet lunch box (${\beta}=0.160$) was increased with increasing taste and economy orientation. Based on the above results, the respondents gave importance to the selected attributes related to food safety and health such as hygiene and, freshness. In addition, they also placed emphasis on hygiene and safe factors such as shelf life, ingredients, and nutrition facts labels. Therefore, it is considered necessary to develop diet lunch boxes by taking these factors into account. Furthermore, in services for diet lunch boxes, it is considered necessary to establish a service system capable of providing consumers with specialized menu or nutrition counseling according to the food-related lifestyle for their proper health management. Particularly, because consumers place emphasis on both food hygiene and safety, and health, it is considered necessary to thoroughly manage hygiene, safety, and nutrition in menu or packaging so that it is possible to enhance customer satisfaction by considering these selected attributes in greater detail.

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

Lateral Movement of Quaywall on Soft Grounds (연약지반에 설치된 안벽구조물의 측방이동 평가)

  • Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.5-16
    • /
    • 2008
  • Field monitoring data of nine sites were investigated to suggest an evaluation method on lateral movement of the quaywall on soft grounds. It was found that in order to evaluate the lateral movement of quaywalls with foundation piles such as the landing pier, the safety factor of slope should be applied with consideration of the stabilizing effect of the piles. If the required safety factor of slope is greater than 1.6 in slope stability analysis with consideration of the stabilizing effect of the piles, the quaywalls are considered to be safe against lateral movement. On the other hand, for the gravity-type quaywalls such as the caisson type quaywall, the required safety factor of slope should be greater than 1.3.

Investigation of the Performance Based Structural Safety Factor of Elbows in Nuclear Power Plants (원전 엘보우의 성능기반 안전여유도 분석)

  • Lee, Sung-Ho;Park, Chi-Yong;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.826-831
    • /
    • 2009
  • The piping systems in nuclear power plant are composed of various typed pipes such as straight, elbow pipe, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are classified as pipe size and type for selecting the investigating range. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(twice elastic slop) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

Tests of Factor Effect Using Saturated Design in $K^n$ Factorial Design ($K^n$ 요인배치법에서 포화실험에 의한 요인효과의 검정)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.295-299
    • /
    • 2008
  • This paper discusses tests of factor effect or contrast by the use of saturated design $k^n$ factorial design. The nine nonparametric rank measures in normality test using normal probability pot are proposed. Length's PSE(Pseduo Standard Error) test [4] which relies on the concept of effect sparsity is also introduced and extended to the margin of error(ME) and Simultaneous margin of error(SME).

  • PDF

A Study on Detecting and eliminating unsafety Factor Under Uncertaints Simulation (불확실한 상황하에서의 불안전 요인 탐색 및 제거를 위한 시스템 개발: SIMULATION 기법 도입)

  • 강경식;나승훈;김병석;조용욱
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.78-82
    • /
    • 1993
  • The object of research is detecting and eliminating the unsafty factor in shortest time through a decision making simulation under uncertainty using simulation method The decision making simulation using C language Is used to analyze data from several factors which affects the crane breakdown under unsafe situation. Through this research, the following conclusions are obtained. first, the safety manager or the person can estimate the time required to handle the unsafe factors. Secondly, The decision making can be accomplished by minimizing the time required under uncertainty by analyzing them.

  • PDF

A Study on Reinforcement for Slope Stability of Gentle Inclination Slope Collapse Occurrence Area (완경사 사면붕괴 지역의 안전성 보강대책 연구)

  • 이승호;황영철;조성민;노흥제;이은동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.83-91
    • /
    • 2003
  • Always slope according to construct road exist danger because of environment unstability factor in slope, Since this research an inclination of slope is gentle slope (1:1.5∼1:9.0) but falling happened by conduct of continuous ground movement. And this study considered more economical and efficient reinforcement method for slope stability. The various reinforcement methods are applied to execute examination of slope stability. Applied reinforcement methods satisfied safety factor And this research region is performing continuous measurement about ground movements and displacements.

  • PDF

A Proposal for Risk Evaluation Method of Slope Failure due to Rainfalls (강우 시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, Jong-Gil;Jung, Min-Su;Tori, Nobuyaki;Okimura, Takashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.893-903
    • /
    • 2008
  • A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.

  • PDF

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

Seismic Fragility Evaluation for Railway Bridge Structures using Results of a Safety Factor (철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용)

  • Kim, Min-Kyu;Hahm, Dae-Gi;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This study is an evaluation of seismic fragility function using the HAZUS program for railway bridge systems, based on the results of previous research on seismic safety factor. First, a fragility function for each of the bridge members was evaluated according to the damage criteria and failure mode. Subsequently, bridge system fragility was evaluated using a fault tree to describe damage status. Finally, a fragility evaluation method for the bridge system was developed, based on the safety factor derived from the previous research.