• Title/Summary/Keyword: Facing target sputtering (FTS)

Search Result 58, Processing Time 0.025 seconds

Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS) (On-axis 스퍼터링과 FTS 공정으로 증착한 ZTO 박막트랜지스터의 특성)

  • Lee, Se-Hee;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.676-680
    • /
    • 2016
  • We have investigated the properties of thin film transistors(TFT) fabricated using zinc tin oxide(ZTO) thin films deposited via on-axis sputtering and FTS methods. ZTO thin films deposited by FTS showed lower root-mean-square(RMS) roughness and more uniformity than those deposited via on-axis sputtering. We observed enhanced electrical properties of ZTO TFT deposited via FTS. The ZTO films were deposited at room temperature via on-axis sputtering and FTS. The as-deposited ZTO films were annealed at $400^{\circ}C$. The TFT using the ZTO films deposited via FTS process exhibited a high mobility of $12.91cm^2/V.s$, a low swing of 0.80 V/decade, $V_{th}$ of 5.78 V, and a high $I_{on/off}$ ratio of $2.52{\times}10^6$.

Preparation of multi-component thin film by facing target sputtering system

  • Kim, Kyung-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.252-252
    • /
    • 2010
  • AIZTO (Al-In-Sn-ZnO) thin film was deposited on glass substrate at room temperature by facing target sputtering (FTS) system. The FTS system was designed to array two targets facing each other. Two different kinds of targets were installed on FTS system. We used the ITO (In2O3 90wt%, SnO2 10wt%) target and the AZO (ZnO 98wt%, Al2O3 2wt%). AIZTO films were deposited in each of the applied power of the targets. The electrical and structural properties of the as-deposited AIZTO thin films were then examined by hall-effect measurement, and by using atomic force microscope (AFM), X-ray diffractometer (XRD), and energy dispersive x-ray spectroscopy (EDX). The optical property was measured by an UV-VIS spectrometer.

  • PDF

Discharge Characteristics of Facing Targets Sputtering Apparatus with Targets Species (타켓 종류에 따른 대향타겟 스퍼터링 장치의 방전 특성)

  • Keum, Min-Jong;Son, In-Hwan;Shin, Sung-Kwan;Ga, Ch-Hyun;Park, Yong-Seo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.620-623
    • /
    • 2004
  • In this study, the discharge characteristic of FTS (Facing Targets Sputtering) apparatus was investigated using metal target paramagnetic and ceramic targets such as Zn, Al, $ZnO:Al(Al_2O_3)$, ITO. Threshold voltage and stable stage of discharge show different with target species. Compare with commercial sputtering apparatus, the FTS apparatus is a high-speed sputter method that promotes ionization of sputter gas by screw and reciprocate moving high-speed ${\gamma}$electrons which arrays two targets facing each other, inserts plasma arresting magnetic field to the parallel direction of the center axis of both targets, discharged from targets and accelerated at the cathode falling area. Especially, we notice that the FTS method using ceramic target has stable discharge characteristic even by DC power source.

  • PDF

Properties of ZrO2 Gas Barrier Film using Facing Target Sputtering System with Low Temperature Deposition Process for Flexible Displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 ZrO2 가스 차단막의 특성)

  • Kim, Ji-Hwan;Cho, Do-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2009
  • $ZrO_2$ film was deposited by facing target sputtering (FTS) system on polyethylene naphthalate (PEN) substrate as a gas barrier layer for flexible organic light emitting devices (FOLEDs), In order to control the heat of the FTS system caused by the ion bombardment in the cathode compared with the conventional sputtering system, the process characteristics of the FTS apparatus are investigated under various sputtering conditions such as the distance between two targets ($d_{TT}$), the distance between the target and the substrate ($d_{TS}$), and the deposition time. The $ZrO_2$ film by the FTS system can reduce the damage on the films because the ion bombardment with high-energy particles like gamma-electrons, Moreover, the $ZrO_2$ film with optimized condition ($d_{TT}$=140 mm) as a function of the distance from center to edge showed a very uniform thickness below 5 % for a deposition time of 3 hours, which can improve the interface property between the anode and the plastics substrate for flexible displays, It is concluded that the $ZrO_2$ film prepared by the FTS system can be applied as a gas barrier layer or an interlayer between the anode and the plastic substrate with good properties of an uniform thickness and a low deposition-temperature.

Crystallography properties of $ZnO/AZO/SiO_2/Si$ thin film for FBAR (FBAR용 $ZnO/AZO/SiO_2/Si$ 박막의 결정학적 특성에 관한 연구)

  • Kang, Tai-Young;Keum, Min-Jong;Son, In-Hwan;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.880-883
    • /
    • 2003
  • ZnO thin films for Film Bulk Acoustic Resonator(FBAR) were prepared by FTS (Facing Target Sputtering) system. The FTS methode enable to generate high density plasma, and it has a high deposition rate at 1mTorr pressure. Therefore, the ZnO thin films were deposited on $AZO/SiO_2/Si$ substrates with oxygen gas flow rate, and the other sputtering conditions were fixed such as a sputtering current of 0.8A, a substrate temperature at room temperature. AZO bottom electrode were deposited on $SiO_2/Si$ substrate and by Zn:Al(Al:2wt%) metal target. ZnO thin film thickness and the c-axis preferred orientation of ZnO thin film were evaluated by ${\alpha}-step$ and XRD.

  • PDF

Characterization of AZO thin films grown on various substrates by using facing target sputtering system

  • Lee, Chang-Hyeon;Son, Seon-Yeong;Bae, Gang;Lee, Chang-Gyu;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.123-123
    • /
    • 2015
  • Al doped ZnO(AZO) films as a transparent conductive oxide (TCO) electrode were deposited on glass, polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) at room temperature by a conventional rf-magneton sputtering (CMS) and a facing target sputtering (FTS) using Al2O3 and ZnO targets. In order to investigation of AZO properties, the structural, surface morphology, electrical, and optical characteristics of AZO films were respectively analyzed. The resistivities of AZO films using FTS system were $6.50{\times}10-4{\Omega}{\cdot}cm$ on glass, $7.0{\times}10-4{\Omega}{\cdot}cm$ on PEN, and $7.4{\times}10-4{\Omega}{\cdot}cm$ on PET substrates, while the values of AZO films using CMS system were $7.6{\times}10-4{\Omega}{\cdot}cm$ on glass, $1.20{\times}10-3{\Omega}{\cdot}cm$ on PEN, and $1.58{\times}10-3{\Omega}{\cdot}cm$ on PET substrates. The AZO-films deposited by FTS system showed uniform surface compared to those of the films by CMS system. We thought that the films deposited by FTS system had low stress due to bombardment of high energetic particles during CMS process, resulted in enhanced electrical conductivity and crystalline quality by highly c-axis preferred orientation and closely packed nano-crystalline of AZO films using FTS system.

  • PDF

Preparation of Transparent conductive oxide cathode for Top-Emission Organic Light-Emitting Device by FTS system and RF system

  • Hong, Jeong-Soo;Park, Yong-Seo;Kim, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2010
  • We prepared Al doped ZnO thin film as a top electrode on a glass substrate with a deposited $Alq_3$ for the top emission organic Light emitting device (TEOLED) with facing target sputtering (FTS) method and radio-frequency (RF) sputtering method, respectively. Before the deposition of AZO thin film, we evaporated the $Alq_3$ on glass substrate by thermal evaporation. And we evaluated the damage of organic layer. As a result, PL intensity of $Alq_3$ on grown by FTS method showed higher than that of grown by RF sputtering method, so we found that the FTS showed the lower damage sputtering than RF sputtering. Therefore, we can expect the FTS method is promising the low-damage sputtering system that can be used as a direct sputtering on the organic layer.

Characteristics of ITO thin Films Grown under Various Process Condition by Using Facing Target Sputtering (FTS) System (FTS장치를 이용한 다양한 공정 조건에서 제작한 ITO 박막의 특성 분석)

  • Kim, Sangmo;Keum, Min Jong;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.112-115
    • /
    • 2017
  • ITO thin films were grown on the glass substrate under various oxygen gas flow and substrate temperature by using FTS (Facing Target Sputtering) system. To investigate properties of as-prepared films for transparent electrical devices, we employed four-point probe, UV-VIS spectrometer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), Hall Effect measurement system and Atomic Force Microscope (AFM). As a results, all of prepared samples has high transmittance of over 80 % in the visible range (300-800 nm). Their resistivity increased as a function of oxygen gas flow and substrate temperature due to their crystal structure and oxygen defect in the films. As-prepared films have a resistivity of under $10^{-4}({\Omega}-cm)$.

  • PDF

Characteristics of ITO films grown by linear facing target sputtering (FTS) and OLEDs properties fabricated on FTS-grown ITO anode (선형 대향 타겟 스퍼터를 이용하여 제작한 ITO 박막의 특성과 이를 이용하여 제작한 유기발광소자 특성)

  • Kim, Han-Ki;Moon, Jong-Min;Kim, Ji-Hwim;Kim, Jang-Joo;Kang, Jae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.401-402
    • /
    • 2007
  • The preparation and characteristics of ITO anode films grown using a linear facing target sputtering (FTS) technique for use in organic light emitting diodes (OLED) and flexible OLED is described. The electrical, optical, and work function of the ITO anode, which was prepared by linear FTS at room temperature, were comparable to those of commercial ITO anode films. In particular, linear FTS-grown ITO films shows very smooth surface without defects such as pin hole and cracks due to low substrate temperature. Furthermore OLED with the linear FTS-grown ITO anode film shows comparable electrical and optical properties to those of OLED with the commercial crystalline-ITO anode film. This suggested that linear FTS is promising thin film technology for preparing high quality anode film in OLEDs and flexible OLEDs.

  • PDF

Process Characteristics of SiOx and SiOxNy Films on a Gas Barrier Layer using Facing Target Sputtering (FTS) System (FTS 장치를 이용한 가스 차단막용 SiOx 및 SiOxNy 박막의 공정특성)

  • Son, Jin-Woon;Park, Yong-Jin;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1028-1032
    • /
    • 2009
  • In this study, the influences of silicon-based gas barrier films fabricated by using a facing target sputtering(FTS) system on the gas permeability for flexible displays have been investigated. Under these optimum conditions on the $SiO_x$ film with oxygen concentration($O_2/Ar+O_2$) of 3.3% and the $SiO_xN_y$ film with nitrogen concentration($N_2/Ar+O_2+N_2$) of 30% deposited by the FTS system, it was found that the films were grown about 4 times higher deposition rate than that of the conventional sputtering system and showed high transmittance about 85% in the visible light range. Particularly, the polyethylene naphthalate(PEN) substrates with the $SiO_x$ and/or $SiO_xN_y$ films showed the enhanced properties of decreased water vapor transmission rate (WVTR) over $10^{-1}\;g/m^2{\cdot}day$ compared with the PEN substrate without any gas barrier films, which was due to high packing density in the Si-based films with high plasma density by FTS process and/or the denser chemical structure of Si-N bond in the $SiO_xN_y$ film.