• Title/Summary/Keyword: Facility layout problem

Search Result 47, Processing Time 0.022 seconds

Efficient Algorithms for Solving Facility Layout Problem Using a New Neighborhood Generation Method Focusing on Adjacent Preference

  • Fukushi, Tatsuya;Yamamoto, Hisashi;Suzuki, Atsushi;Tsujimura, Yasuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.1
    • /
    • pp.22-28
    • /
    • 2009
  • We consider facility layout problems, where mn facility units are assigned into mn cells. These cells are arranged into a rectangular pattern with m rows and n columns. In order to solve this cell type facility layout problem, many approximation algorithms with improved local search methods were studied because it was quite difficult to find exact optimum of such problem in case of large size problem. In this paper, new algorithms based on Simulated Annealing (SA) method with two neighborhood generation methods are proposed. The new neighborhood generation method adopts the exchanging operation of facility units in accordance with adjacent preference. For evaluating the performance of the neighborhood generation method, three algorithms, previous SA algorithm with random 2-opt neighborhood generation method, the SA-based algorithm with the new neighborhood generation method (SA1) and the SA-based algorithm with probabilistic selection of random 2-opt and the new neighborhood generation method (SA2), are developed and compared by experiment of solving same example problem. In case of numeric examples with problem type 1 (the optimum layout is given), SA1 algorithm could find excellent layout than other algorithms. However, in case of problem type 2 (random-prepared and optimum-unknown problem), SA2 was excellent more than other algorithms.

Tree Structure Modeling and Genetic Algorithm-based Approach to Unequal-area Facility Layout Problem

  • Honiden, Terushige
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.123-128
    • /
    • 2004
  • A tree structure model has been proposed for representing the unequal-area facility layout. Each facility has a different rectangular shape specified by its area and aspect ratio. In this layout problem, based on the assumption that the shop floor has enough space for laying out the facilities, no constraint is considered for a shop floor. Objectives are minimizing total part movement between facilities and total rectangular layout area where all facilities and dead spaces are enclosed. Using the genetic code corresponding to two kinds of information, facility sequence and branching positions in the tree structure model, a genetic algorithm has been applied for finding non-dominated solutions in the two-objective layout problem. We use three kinds of crossover (PMX, OX, CX) for the former part of the chromosome and one-point crossover for the latter part. Two kinds of layout problems have been tested by the proposed method. The results demonstrate that the presented algorithm is able to find good solutions in enough short time.

A Group Decision Model for Selecting Facility Layout Alternatives

  • Lin, Shui-Shun;Chiou, Wen-Chih;Lee, Ron-Hua;Perng, Chyung;Tsai, Jen-Teng
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.82-93
    • /
    • 2005
  • Facility layout problems (FLP) are usually treated as design problems. Lack of systematic and objective tools to compare design alternatives results in decision-making to be dominated by the experiences or preferences of designers or managers. To increase objectivity and effectiveness of decision-making in facility layout selections, a decision support model is necessary. We proposed a decision model, which regards the FLP as a multi-attribute decision making (MADM) problem. We identify sets of attributes crucial to layout selections, quantitative indices for attributes, and methods of ranking alternatives. For a requested facility layout design, many alternatives could be developed. The enormous alternatives, various attributes, and comparison of assigned qualitative values to each attribute, form a complicated decision problem. To treat facility layout selection problems as a MADM problem, we used the linear assignment method to rank before selecting those high ranks as candidates. We modelled the application of the Nemawashi process to simulate the group decision-making procedure and help efficiently achieve agreement. The electronics manufacturing service (EMS) industry has frequent and costly facility layout modifications. Our models are helpful to them. We use an electronics manufacturing service company to illustrate the decision-making process of our models.

An Expert System and Genetic Algorithm for Facility Layout Problem

  • Limudomsuk, Thitipong;Sirinaovakul, Boonchareon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1654-1657
    • /
    • 2002
  • This paper presents a system for facility layout problem using an expert system and a genetic algorithm. The practical facility layout design can be effected by characteristics of constructing model, slicing tree model, closeness weight metric and expert system. The genetic algorithm searches the result layout. An experimental system is implemented and produced desired layout.

  • PDF

APPLICATION OF THE CONSTRAINT SATISFACTION APPROACH TO GENERAL LAYOUT PROBLEMS (일반 배치문제 해결을 위한 제약만족기법의 적용)

  • Park, Sung-Joon;Jung, Eui-S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.539-550
    • /
    • 1998
  • A computerized layout system based on a constraint satisfaction problem (CSP) technique was developed to treat both facility layout and instrument panel layout problems. This layout system attempts to allocate various facilities under multiple layout criteria including qualitative design objectives. Since most of the design objectives can be understood as constraints which the layout solution must satisfy to improve the goodness of the solution, a CSP technique was employed to solve the multi-constraints layout problem. The effectiveness of the system was evaluated by the comparison with the well-known facility layout program, CORELAP. Furthermore, the proposed system can also be applied to the instrument panel layout problem successfully. Several user-centered guidelines were well reflected on the solution obtained. CONSLAY, the prototype layout system being developed in the research, greatly enhanced the interactions with the designer so as to deal with the problem-dependent nature of the layout problem and to properly reflect the domain-specific knowledge of the designer.

  • PDF

A Study on the Optimal Facility Layout Design Using an Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 최적 공간 배치 설계에 관한 연구)

  • 한성남;이규열;노명일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.174-183
    • /
    • 2001
  • This study proposes an improved genetic algorithm (GA) to derive solutions for facility layout problems having inner walls and passages. The proposed algorithm models the layout of facilities on a flour-segmented chromosome. Improved solutions are produced by employing genetic operations known as selection, crossover, inversion, mutation, and refinement of these genes for successive generations. All relationships between the facilities and passages are represented as an adjacency graph. The shortest path and distance between two facilities are calculated using Dijkstra's algorithm of graph theory. Comparative testing shows that the proposed algorithm performs better than other existing algorithm for the optimal facility layout design. Finally, the proposed algorithm is applied to ship compartment layout problems with the computational results compared to an actual ship compartment layout.

  • PDF

On the Study of Rationalization of Plant Layout - Orient ed Non-massing Jobbing Production Shop - (설비배치합리화에 관한 연구 - 다품종소량생산형태를 중심으로 -)

  • 조남호;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.7 no.10
    • /
    • pp.1-16
    • /
    • 1984
  • The purpose of this paper is to develop rational layout model for small and medium scale industry in Korea. The methodology of this paper is to light the importance of small and medium scale company. Moreover, to overcome the problem of layout in non-massing jobbing production shop this paper is proposed four techniques. So proposed layout model is obtained analytically in single, multiple facility location problem The result of this paper is as follows : First, alternatives to overcome abnormal layout in small and medium company are 1) GT (Group Technology) 2) SLP (Systematic Layout Planning) 3) OR (Operations Research) 4) Computer Second, in single facility location problem, Gradient method and square weighted average method are studied. Lastly in multiple facility location problem, heuristic method is obtained.

  • PDF

A study on optimal of block facility layout using Hybrid GA (Hybrid GA를 이용한 최적의 블록단위 설비배치에 관한 연구)

  • 이용욱;석상문;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.131-142
    • /
    • 2000
  • Facility layout is the early stage of system design that requires a mid-term or long-term plan. Since improper facility layout might incur substantial logistics cost including material handling and re-installment costs, due consideration must be given to decisions on facility layout. Facility layout is concerned with low to arrange equipment necessary for production in a given space. Its objective is to minimize the sum of all the products of each equipment's amount of flow multiplied by distance. Facility layout also is related to the issue of NP-complete, i.e., calculated amounts exponentially increase with the increase of the number of equipment. This study discusses Hybrid GA developed, as an algorithm for facility layout, to solve the above-mentioned problems. The algorithm, which is designed to efficiently place equipment, automatically produces a horizontal passageway by the block, if a designer provides the width and length of the space to be handled. In addition, this study demonstrates the validity of the Algorithm by comparing with existing algorithms that have been developed. We present a Hybrid GA approach to the facility layout problem that improves on existing work in terms of solution quality and method. Experimental results show that the proposed algorithm is able to produce better solution quality and more practical layouts than the ones obtained by applying existing algorithms.

  • PDF

An Integrated AHP-VIKOR Methodology for Facility Layout Design

  • Shokri, Hamidreza;Ashjari, Behzad;Saberi, Morteza;Yoon, Jin Hee
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.389-405
    • /
    • 2013
  • A facility layout design (FLD) problem can be generally introduced as assignment of facilities (departments) to a site such that a set of criteria are satisfied or some objectives are minimized (maximized). Hence, it can be considered as a multi-criteria problem due to the presence of qualitative criteria such as maintenance or flexibility and quantitative criteria such as the total cost of handling material. The VIKOR method was developed to solve multiple criteria decision making problems with conflicting and non-commensurable (different units) criteria, assuming that compromising is acceptable for conflict resolution, the decision maker wants a solution that is the closest to the ideal, and the alternatives are evaluated according to all established criteria. This paper proposes a hierarchical analytic hierarchy process (AHP) and VIKOR approach to solve the FLD problem. A computer-aided layout-planning tool is adopted to generate the facility layout problems, as well as their quantitative data. The qualitative performance measures are weighted by AHP. VIKOR is then used to solve the FLD problem. Finally, the proposed integrated procedure is applied to three real-time examples.