• Title/Summary/Keyword: Facility cultivation

Search Result 118, Processing Time 0.024 seconds

Remote Control of Pumping System for Underground Water Pollution and Running Dry Prevention Using Ubiquitous (유비쿼터스를 이용한 지하수 오염과 고갈방지를 위한 펌핑시스템의 원격제어)

  • Tack, Han Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • This paper was development of remote controller of pumping system by using ubiquitous for underground water contamination prevention in the area of glasshouse facility. This paper automatically controls from to temperature and humidity for pumping sprinkler at water hanging cultivation. This prevents indiscreetive development of underground water, and prevents damage of environmental pollution without complementary measures in case of water lacked humble-void. The result of this research, confirms decrease of electrical fee, prevention of indiscreet underground water usage and its drying up thought optimum farm products management and pumping control system.

Effects of productivity of Lentinula edodes according to the control of high-temperature environment in summer (여름철 표고 톱밥재배의 고온환경조절이 버섯생산성 향상에 미치는 영향)

  • Kim, In-Yeop;Kim, Seon-Cheol;Noh, Jong-Hyun;Choi, Sun-Gyu;Lee, Won-Ho;Ko, Han-Gyu;Park, Heung-Soo;Koo, Chang-Duk
    • Journal of Mushroom
    • /
    • v.13 no.4
    • /
    • pp.288-293
    • /
    • 2015
  • In the structural investigation of cultivation facilities, the proportion of farmers to grown with double or triple structure were investigated 96%. It has been shown to grow with a stable cultivation facilities structure against environmental changes. The results of the analysis of the changes in the cultivation environment of Yeoju area in July-august, temperature and humidity of the external instrument shelter was $20.2{\sim}29.9^{\circ}C$ and 66.2~99.9% respectively. In the greenhouse 2 model capable of temperature environment regulation in the cultivation facility, temperature and humidity were investigated $19.3{\sim}25.7^{\circ}C$ and 81.6~99.9% respectively. Result of the survey of fruiting body characteristics and yields in the greenhous 2, pileus diameter and stipe length were investigated 66.2 and 54.1 mm, yield of mushroom and individual weight were 312 g and 26.6 g. High-temperature environment regulation shows the improvement of the quality and productivity of the mushroom. Power consumption of the air conditioning has been investigated using 56kwh/day, electricity costs were calculated 2195 won/day.

Effect of Reversible Air-circulation Fans on Air Uniformity in a Cultivation Facility for Oyster Mushroom (느타리재배사 정역 제어 대류팬이 공기 균일도에 미치는 영향)

  • Yum, Sung Hyun;Kim, Si Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2021
  • It has been known that oyster mushrooms cultivated in facilities with thermal insulation have been strongly affected by inner environments. Forced air-circulation fans exert much direct influence on disturbing air inside the facility so the matter is of particular interest. This study is carried out to investigate the measured levels of air uniformity in a cultivation facility for oyster mushroom in the various cases that reversibly controlled air-circulation fans which drove the flow in the upward and reverse direction by turn and unidirectional fans by which the wind blew upwards only were operated from July 1 to 10. The actual survey for the selection of ongoing operation cases presented that farmers, even though there were some discrepancies, have made use of fans in a way that it paused for 5-30min after running for 5-15min by turn. The level of air uniformity in the case of adopting reversible fans revealed a slight difference of 1.4-1.8℃ (Temp.) and 7.8-8.7% (R.H.) under the condition of not using a cooler during the investigation period. By contrast, unidirectional fans showed a noticeable difference of 3.2-3.7℃ and 14.0-15.4%, which meant that air uniformity driven by reversible fans much more increased compared to that for unidirectional fans. Among the twenty operational applications considered for reversible fans, the circumstance that the wind blew upwards for 10-15min and ceased for 5-10min and blew again in the reverse direction for 10-15min in succession gave minor improvements at the level of air uniformity, but at present there was somewhat difficult to make decision on which cases were optimally best. It seems necessary that the effects of reversible fans on air uniformity as well as qualities of oyster mushrooms have to be appraised in the cultivation period and the flow visualization needs to be done to ascertain the performance of air mixture.

Estimation of Willingness-to-pay for Rehabilitation and Upgrading of Reservoirs in Protecting Against Natural Disasters and Dam-Break (재해·재난 예방을 위한 저수지개보수사업의 지불의사금액 추정)

  • Park, Sung Kyung;Lim, Cheong Ryong;Han, Jae Hwan;Chung, Won Ho
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.139-153
    • /
    • 2018
  • This study analyzes the economic effect of rehabilitation and upgrading of reservoirs as a prevented method against natural disasters under recent abnormal weather conditions and dam-break. For the analysis, we divide the purpose of rehabilitation and upgrading of reservoirs into the stable supply of rural water under uncertain weather conditions and the prevention of collapse due to the aging of the reservoir. We measure the economic effect of rehabilitation and upgrading of reservoirs by estimating the resident's willingness-to-pay for the project through Contingent Valuation Method(CVM). The result shows that distributions of willingness-to-pay to prevent natural disasters and dam-break are similar to each other. About 66% of the residents in sample regions are willing to pay for the project. The resident's willingness-to-pay to protect natural disasters and dam-break are 32,250 to 46,147 won and 28,427 to 47,308 won respectively on average for all sample regions. The comparison of willingness-to-pay by type of regions shows that paddy field areas are the highest followed by facility cultivation areas and urban areas. In addition, total expected value of the projects calculated based on the resident's willingness-to-pay for paddy field areas and facility cultivation areas are much larger than actual project costs. This implies that rural residents are fully aware of the importance of the project to prevent natural disasters and dam-break and are willing to pay for additional costs if needed.

Economic Evaluations of Facility Farms by the Introduction of Mango Ultra-High Density Pot Cultivation (망고 초밀식 화분재배 도입 시설농가의 경제성 평가)

  • Jeong, U Seok;Kim, Seongsup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.279-290
    • /
    • 2021
  • This study evaluated the economic feasibility of facility farms according to the introduction of the ultra-high density pot cultivation (UHDPC) for mango. The basic model was selected as a representative farmhouse case in the Jeonnam region, and seven scenarios for conventional crops were tested. The economic feasibility of crop switching was analyzed through partial budget analysis (PBA). The PBA analysis results were supplemented by adding a sensitivity analysis and a break-even point (BEP) analysis. As a result of the analyses, it was found that crop conversion was economical because the increase in the profit coefficient was greater than the increase in the loss coefficient due to the introduction of mango for all conventional crops. The economics of introducing mango was more sensitive to changes in gross income than to changes in cost items. The results show the detailed conditions of crop selection according to the conditions and preferences of individual farms by presenting the direction of increase and decrease by budget item and information on the amount of increase or decrease. In particular, the BEP analysis result, which is about half of the farms case, is significant in that it presents the minimum target value according to production and market risks.

Intelligent Smart Farm A Study on Productivity: Focused on Tomato farm Households (지능형 스마트 팜 활용과 생산성에 관한 연구: 토마토 농가 사례를 중심으로)

  • Lee, Jae Kyung;Seol, Byung Moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.185-199
    • /
    • 2019
  • Korea's facility horticulture has developed remarkably in a short period of time. However, in order to secure international competitiveness in response to unfavorable surrounding conditions such as high operating costs and market opening, it is necessary to diagnose the problems of facility horticulture and prepare countermeasures through analysis. The purpose of this study was to analyze the case of leading farmers by introducing information and communication technology (ICT) in hydroponic cultivation agriculture and horticulture, and to examine how agricultural technology utilizing smart farm and big data of facility horticulture contribute to farm productivity. Crop growth information gathering and analysis solutions were developed to analyze the productivity change factors calculated from hydroponics tomato farms and strawberry farms. The results of this study are as follows. The application range of the leaf temperature was verified to be variously utilized such as house ventilation in the facility, opening and closing of the insulation curtain, and determination of the initial watering point and the ending time point. Second, it is necessary to utilize water content information of crop growth. It was confirmed that the crop growth rate information can confirm whether the present state of crops is nutrition or reproduction, and can control the water content artificially according to photosynthesis ability. Third, utilize EC and pH information of crops. Depending on the crop, EC values should be different according to climatic conditions. It was confirmed that the current state of the crops can be confirmed by comparing EC and pH, which are measured from the supplied EC, pH and draining. Based on the results of this study, it can be confirmed that the productivity of smart farm can be affected by how to use the information of measurement growth.

A Study on Economical Efficiency Evaluation of Semiforcing under Structure Watermelon Cultivators (반촉성 시설수박 재배농가의 경제적 효율성 분석)

  • Kim, Woong;Kim, Jai Hong
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.2
    • /
    • pp.179-193
    • /
    • 2006
  • Technical efficiency of semiforcing watermelon growers is 0.8248 on average, and distributed between 0.6744 and 0.9268. The result showed that semiforcing watermelon growers had by 18% of technical inefficiency and could be assumed that increasing technical efficiency could induce watermelon production more increase. Consequently, if growers' technical efficiency were improved while other environments were constant, watermelon production could be increased. Following the results from the inefficiency effect model, all assumption coefficient such as growers age etc, are significant at 10% level. Estimate of dispersion parameter ${\gamma}$ is 0.89, which confirms those differences between practical output and frontier output were derived from the technical efficiencies among growers. Differences of production system between high and low level growers in production efficiency were showed at side altitude, ventilation and heat-retaining in section of facilities and automation, soil test and calcium application in section of environment management, transplant preparation and duration of pollination in section of crop management and shipment place, sorting degree and management record analysis in section of business management respectively. As a result of analyzing consulting data by using standard diagnosis table of watermelon cultivation under structure which cultivated on semi-forced watermelon growers, gap between high and low level growers was 7.0 points in facility automation section, 7.1 points in environment section, 8.8 points in crop management section and 13.6 points in business management section, respectively, which were the biggest one among them. In case of excluding information-related items from the evaluation index of business management section, changes of business achievement are to occur. Therefore, it is recommended for us to review the standard diagnostic table of watermelon cultivation under structure by dividing evaluation index of management section into management and information.

  • PDF

Facilities Analysis of Laver Cultivation Grounds in Korean Coastal Waters Using SPOT-5 Images in 2005 (SPOT-5 위성영상에 의한 2005년 한국 연안 김 양식장의 시설현황 분석)

  • Yang Chan-Su;Park Sung-Woo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The cultural grounds of lave r have been surveyed using SPOT-5 satellite images. The facilities of laver cultivation area in the coastal waters of Korea were calculated. 10 m resolution multispectral images of SPOT-5 are adopted for the southern are a of Jebu Island, Hwaseong city to develop an automatic detection approach of laver nets that consists of the following: band difference technique, canny edge detector and morphological analysis: The number of satellite-based facilities was relatively high as compared with the licensed number in 2005, 676,749 chaek and 572,745 chaek(柵, unit of measure for laver farm), respectively. The ratio of a law abiding facility was very low at 52.9%. These data could be applied to control its national production keeping a stable market price for the government body.

  • PDF

Evaluation of Rice Nitrogen Utilization Efficiency under High Temperature and High Carbon Dioxide Conditions

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.168-168
    • /
    • 2022
  • According to the 5th Climate Change Report, global average temperature in 2081~2100 will increase 1.8℃ based on RCP 4.5 and 3.7℃ based on RCP 8.5 from the current climate value (IPCC Working Group I AR5). As temperature is expected to increase due to global warming and the intensity and frequency of rainfall are expected to increase, damage to crops is expected, and countermeasures must be taken. This study intends to evaluate rice growth in terms of nitrogen utilization efficiency according to future climate change conditions. In this experiment, Oryza sativa cv. Shindongjin were planted at the SPAR facility of the NICS in Wanju-gun, Jeollabuk-do on June 10, and were planted and grown according to the standard cultivation method. Cultivation conditions are high temperature, high CO2 (current temperature+4.7℃·CO2 800ppm), high temperature (current temperature+4.7℃·CO2 400ppm), current climate (current tempreture·CO2 400 ppm). Nitrogen was varied as 0, 9, 18 kg/10a. The N content and C/N ratio of all rice leaves, stems, and seeds increased at high temperature, and the N content and C/N ratio decreased under high temperature and high CO2 conditions com pared to high temperature. Compared to the current climate, NUE increases by about 8% under high temperature and high CO2 conditions and by about 2% under high temperature conditions. This seems to be because the increase in temperature and CO2 induced the increase in biomass. ANUE related to yield decreased by about 70% compared to the current climate under high temperature conditions, and decreased by about 45% at high temperature and high CO2, showing a tendency to decrease compared to high temperature. This appears to be due to reduced fertility and poor ripening due to high temperature stress. However, as the nitrogen increased, the number of ears and the number of grains increased, slightly offsetting the production reduction factor.

  • PDF

A Study on Simulator for Environment Control of Agricultural Production Facility - Construction of Basic System with Numerical Model - (농업생산시설의 환경조절용 시뮬레이터에 관한 연구 - 수치모델에 의한 기본시스템 구축 -)

  • 손정익;최규홍
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1996
  • The purpose of this study is to construct the main system of simulator for the environment control of agricultural production facilities. The model describing the system was based on the energy and mass balance in an unsteady - state situation. The model consist of the three major parts : the main model, the light model, and the environmental control model, and each part was separated to be developed individually. The main model which is the core of this system includes the thermal model, the soil model, the ventilation model, the cultivation model, and the carbon dioxide model. And also the environmental control model includes the thermal curtain model, the heater/cooler model and the underground heat exchanger model. The equations used in this model were written in analog programming methods using PCSMP The simulator was evaluated through comparison between simulated and measured temperatures controlled during daytime and night. The results showed good agreements between the predicted and measured temperatures.

  • PDF