Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.
The aim of this study is to investigate facial temperature changes induced by facial expression and emotional state in order to recognize a persons emotion using facial thermal images. Background: Facial thermal images have two advantages compared to visual images. Firstly, facial temperature measured by thermal camera does not depend on skin color, darkness, and lighting condition. Secondly, facial thermal images are changed not only by facial expression but also emotional state. To our knowledge, there is no study to concurrently investigate these two sources of facial temperature changes. Method: 231 students participated in the experiment. Four kinds of stimuli inducing anger, fear, boredom, and neutral were presented to participants and the facial temperatures were measured by an infrared camera. Each stimulus consisted of baseline and emotion period. Baseline period lasted during 1min and emotion period 1~3min. In the data analysis, the temperature differences between the baseline and emotion state were analyzed. Eyes, mouth, and glabella were selected for facial expression features, and forehead, nose, cheeks were selected for emotional state features. Results: The temperatures of eyes, mouth, glanella, forehead, and nose area were significantly decreased during the emotional experience and the changes were significantly different by the kind of emotion. The result of linear discriminant analysis for emotion recognition showed that the correct classification percentage in four emotions was 62.7% when using both facial expression features and emotional state features. The accuracy was slightly but significantly decreased at 56.7% when using only facial expression features, and the accuracy was 40.2% when using only emotional state features. Conclusion: Facial expression features are essential in emotion recognition, but emotion state features are also important to classify the emotion. Application: The results of this study can be applied to human-computer interaction system in the work places or the automobiles.
Purpose: The purpose of the study was to assess the validity of three-dimensional (3D) facial scan taken with facial scanner and digital photo wrapping on the cone-beam computed tomography (CBCT). Materials and Methods: Twenty-five patients had their CBCT scan, two-dimensional (2D) standardized frontal photographs and 3D facial scan obtained on the same day. The facial scans were taken with a facial scanner in an upright position. The 2D standardized frontal photographs were taken at a fixed distance from patients using a camera fixed to a cephalometric apparatus. The 2D integrated facial models were created using digital photo wrapping of frontal photographs on the corresponding CBCT images. The 3D integrated facial models were created using the integration process of 3D facial scans on the CBCT images. On the integrated facial models, sixteen soft tissue landmarks were identified, and the vertical, horizontal, oblique and angular distances between soft tissue landmarks were compared among the 2D facial models and 3D facial models, and CBCT images. Result: The results showed no significant differences of linear and angular measurements among CBCT images, 2D and 3D facial models except for Se-Sn vertical linear measurement which showed significant difference for the 3D facial models. The Bland-Altman plots showed that all measurements were within the limit of agreement. For 3D facial model, all Bland-Altman plots showed that systematic bias was less than 2.0 mm and 2.0° except for Se-Sn linear vertical measurement. For 2D facial model, the Bland-Altman plots of 6 out of 11 of the angular measurements showed systematic bias of more than 2.0°. Conclusion: The facial scan taken with facial scanner showed a clinically acceptable performance. The digital 2D photo wrapping has limitations in clinical use compared to 3D facial scans.
얼굴 인식 및 얼굴 생성이 다양한 분야에서 큰 주목을 받고 있지만, 얼굴 이미지를 모델 학습에 사용하는데 따른 개인 정보 문제는 최근 큰 문제가 되고 있다. 본 논문에서는 소수의 실제 얼굴 이미지와 안면 마스크 정보로부터 다양한 속성을 가진 얼굴 이미지를 생성함으로써 개인 정보 침해 이슈를 줄일 수 있는 얼굴 편집 네트워크를 제안한다. 다수의 실제 얼굴 영상을 이용하여 얼굴 속성을 학습하는 기존의 방법과 달리 제안하는 방법은 얼굴 분할 마스크와 얼굴 부분 텍스처 영상을 스타일 정보로 사용하여 새로운 얼굴 이미지를 생성한다. 이후 해당 이미지는 각 참조 이미지의 스타일과 위치를 학습하기 위한 훈련에 사용된다. 제안하는 네트워크가 학습되면 소수의 실제 얼굴 영상과 얼굴 분할 정보만을 사용하여 다양한 얼굴 이미지를 생성할 수 있다. 실험에서 제안 기법이 실제 얼굴 이미지를 매우 적게 사용함에도 불구하고 새로운 얼굴을 생성할 뿐만 아니라 얼굴 속성 편집을 지역화하여 수행할 수 있음을 보인다.
본 논문에서는 3차원 얼굴 스캔 데이터와 사진 이미지를 이용하여 고화질의 3차원 얼굴 모델과 모핑 애니메이션을 생성하는 시스템 개발에 대해 기술한다. 본 시스템은 얼굴 특징점 입력 도구, 얼굴 텍스처매핑 인터페이스, 3차원 얼굴 모핑 인터페이스로 구성되어 있다. 얼굴 특징점 입력 도구는 3차원 텍스처매핑과 모핑 애니메이션을 위한 보조 도구로서 얼굴의 특징점을 입력하여 텍스처매핑과 임의의 두 얼굴간의 모핑 영역을 정할 때 사용된다. 텍스처매핑은 3D 스캐너로부터 획득한 얼굴의 기하 데이터에 세 방향의 사진 이미지를 이용하여 매핑한다. 3D 얼굴모핑은 얼굴 특징점 입력 도구로부터 얻은 특징점을 중심으로 얼굴 영역을 분류하여 임의의 두 얼굴 간의 영역간 매핑을 실현한다. 본 시스템은 사용자가 별도의 프로그래밍 작업 없이 대화형 인터페이스에서 3D 스캐너에서 획득한 얼굴 메쉬 데이터를 이용하여 사진 이미지로 텍스처 매핑을 실행하여 사실적인 3D 얼굴 모델을 얻을 수 있고, 임의의 서로 다른 얼굴 모델들간의 모핑 애니메이션을 쉽게 실현할 수가 있다.
Journal of Information Technology Applications and Management
/
제10권4호
/
pp.135-147
/
2003
With the development of multimedia and optical technologies, application systems with facial features hare been increased the interests of researchers, recently. The previous research efforts in face processing mainly use the frontal images in order to recognize human face visually and to extract the facial expression. However, applications, such as image database systems which support queries based on the facial direction and image arrangement systems which place facial images automatically on digital albums, deal with the directional characteristics of a face. In this paper, we propose a method to detect facial directions by using facial features. In the proposed method, the facial trapezoid is defined by detecting points for eyes and a lower lip. Then, the facial direction formula, which calculates the right and left facial direction, is defined by the statistical data about the ratio of the right and left area in facial trapezoids. The proposed method can give an accurate estimate of horizontal rotation of a face within an error tolerance of $\pm1.31$ degree and takes an average execution time of 3.16 sec.
In face recognition based on the Karhunen-Loeve approximation, amplitudespectra of Fourier transformed facial images were used. We found taht the use of amplitude spetra gives not only the shift-invariance property but also some improvment of recognition rate. This is because the distance between the varing faces of a person compared with that between the different persons perfomed computer experiments on face recognitio with varing facial images obtained from total 55 male and 25 females. We confirmed that the use of amplitude spectra of Fourier-trnsformed facial imagesgives better recognition rate for avariety of varying facial images including shifted ones than the use of direct facial images does.
본 논문은 국내 표정 연구에 적합한 얼굴 표정 이미지를 제작하는 것에 목적을 두었다. 이를 위해서 1980년대 태생의 한국인의 표준 형상에 FACS-Action Unit을 결합하여, KSFI(Korean Standard Facial Image) AU set를 제작하였다. KSFI의 객관성을 확보하기 위해 6가지 기본 감성(슬픔, 행복, 혐오, 공포, 화남, 놀람) 이미지를 제작하여, 감성 별 인식 정확률과 얼굴 요소의 감성인식 기여도를 평가하였다. 실험 결과, 정확률이 높은 행복, 놀람, 슬픔, 분노의 이미지의 경우 주로 눈과 입의 얼굴 요소를 통해 감성을 판단하였다. 이러한 연구 결과를 통해 본 연구에서는 표정 이미지의 AU 변경할 수 있는 KSFI 콘텐츠를 제안하였다. 향후 KSFI가 감성 인식률 향상에 기여할 수 있는 학습 콘텐츠로서의 역할을 할 수 있을 것으로 사료된다.
본 연구에서는 ATM 보안 시스템을 위한 DCT와 신경망 기반 모델 인증 알고리즘을 제안한다. CCD 카메라를 이용하여 일정한 조도와 거리에서 30명의 얼굴영상을 획득한 후 데이터 베이스를 구성한다. 모델 인증 실험을 위해 동일인에 대해 학습영상 4장 그리고 실험 영상 4장을 각각 획득한다. 얼굴영상의 에지를 검출한 후 에지 분포에 의해 얼굴영상에서 사각형태로 특징영역을 검출한다. 특징영역에는 눈썹, 눈, 코, 입, 그리고 뺨이 포함된다. 특징영역에 대해 DCT를 수행한 후 대각방향의 계수 합을 구해 특징벡터를 추출한다. 특징벡터는 정규화되어 신경망의 입력 벡터가 된다. 패스워드를 고려하지 않는 경우, 데이터 베이스를 검색한 결과 학습된 얼굴영상에 대해서는 100%의 인증율을 나타내었고 학습되지 않는 얼굴영상의 경우에는92%의 인증률을 나타내었다. 그러나 패스워드를 고려한 경우 모두 100%의 인증율을 보였다.
본논문에서는 3차원 3D 얼굴 스캔 데이터와 사진 이미지를 이용하여 3D 얼굴 모델을 생성하고 향후의 얼굴을 예측하는 시스템 개발에 대해 기술한다. 본 시스템은 3차원 텍스처매핑, 얼굴 정의 파라미터 입력 도구, 3차원 예측 알고리즘으로 구성 되어 있다. 3차원 텍스처매핑 기능에서는 3D 스캐너로 획득한 얼굴 모델과 사진 이미지를 이용하여 특정 연령에서의 새로운 얼굴모델을 생성한다. 텍스처매핑은 3D 스캐너로부터 획득한 메쉬 데이터에 정면과 좌우 측면의 세 방향의 사진 이미지를 이용하여 매핑하였다. 얼굴 정의 파라미터 입력도구는 3차원 텍스처매핑에 필요한 사용자 인터페이스 도구로서, 얼굴 모델의 정확한 재질값을 얼굴 사진으로부터 얻기 워하여 사진과 3D 얼굴 모델의 특징점을 일치시키는데 사용된다. 본 연구에서는 한 얼굴의 향후 연령대에서의 얼굴 모델을 구하기 위하여 100여개의 얼굴 스캔 데이터베이스를 이용한 통계적 분석에 의해 재질값을 예측 계산하여 해상도 높은 재질값을 가지는 모든 연령대의 3D 얼굴모델을 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.