Graphical expressions are continuously improving, spurred by the astonishing growth of the game technology industry. Despite such improvements, users are still demanding a more natural gaming environment and true reflections of human emotions. In real life, people can read a person's moods from facial color and expression. Hence, interactive facial colors in game characters provide a deeper level of reality. In this paper we propose a facial color adaptive technique, which is a combination of an emotional model based on human emotion theory, emotional expression pattern using colors of animation contents, and emotional reaction speed function based on human personality theory, as opposed to past methods that expressed emotion through blood flow, pulse, or skin temperature. Experiments show this of expression of the Facial Color Model based on facial color adoptive technique and expression of the animation contents is effective in conveying character emotions. Moreover, the proposed Facial Color Adaptive Technique can be applied not only to 2D games, but to 3D games as well.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.1
/
pp.113-117
/
2018
Human emotions are revealed by various factors. Words, actions, facial expressions, attire and so on. But people know how to hide their feelings. So we can not easily guess its sensitivity using one factor. We decided to pay attention to behaviors and facial expressions in order to solve these problems. Behavior and facial expression can not be easily concealed without constant effort and training. In this paper, we propose an algorithm to estimate human emotion through combination of two results by gradually learning human behavior and facial expression with little data through the deep learning method. Through this algorithm, we can more comprehensively grasp human emotions.
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.3
/
pp.245-251
/
2023
Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.
This study consists of two sections to figure out the relationship between autistic features and empathizing-systemizing traits. For the first section, the research involved 355 university students to measure their EQ, SQ-R and AQ. As a result, it is found that AQ was negatively correlated to EQ, and D score(relative difference between EQ and SQ-R of the individuals), but it was not significantly related to SQ-R. It means that the subject has high AQ if he has relatively lower EQ than SQ-R. For the second section, the subjects were divided into two groups based on their AQ score; the subjects who had a tendency of autism and the subjects who did not. The test measured how these two groups were different in terms of facial expressions' recognition according to the tendency of autism, facial expression presenting areas(whole face, eyes-alone, mouth-alone) and different types of emotions(basic and complex emotions). As a result, the subjects who had a tendency of autism were lower at judging facial expressions than the subjects who did not. Also, the results showed that the subjects judged better on the condition of basic emotions more than complex emotions, the whole face more than eyes-alone and mouth-alone. Especially, for the eyes-alone condition, the subjects who had a tendency of autism were lower at judging facial expressions than the subjects who did not. This study suggests that empathizing traits and facial expressions' recognition are related to the tendency of autism.
An, Na Young;Lee, Ju Young;Cho, Sun Mi;Chung, Young Ki;Shin, Yun Mi
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.24
no.2
/
pp.83-89
/
2013
Objectives : It is known that children with attention-deficit hyperactivity disorder (ADHD) experience significant difficulty in recognizing facial emotion, which involves processing of emotional facial expressions rather than speech, compared to children without ADHD. This objective of this study is to investigate the differences in facial emotion recognition between children with ADHD and normal children used as control. Methods : The children for our study were recruited from the Suwon Project, a cohort comprising a non-random convenience sample of 117 nine-year-old ethnic Koreans. The parents of the study participants completed study questionnaires such as the Korean version of Child Behavior Checklist, ADHD Rating Scale, Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. Facial Expression Recognition Test of the Emotion Recognition Test was used for the evaluation of facial emotion recognition and ADHD Rating Scale was used for the assessment of ADHD. Results : ADHD children (N=10) were found to have impaired recognition when it comes to Emotional Differentiation and Contextual Understanding compared with normal controls (N=24). We found no statistically significant difference in the recognition of positive facial emotions (happy and surprise) and negative facial emotions (anger, sadness, disgust and fear) between the children with ADHD and normal children. Conclusion : The results of our study suggested that facial emotion recognition may be closely associated with ADHD, after controlling for covariates, although more research is needed.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.27
no.3
/
pp.207-215
/
2016
Objectives: This study aimed to investigate the differences in the facial emotion recognition and discrimination ability between children with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Methods: Fifty-three children aged 7 to 11 years participated in this study. Among them, 43 were diagnosed with ADHD and 10 with ASD. The parents of the participants completed the Korean version of the Child Behavior Checklist, ADHD Rating Scale and Conner's scale. The participants completed the Korean Wechsler Intelligence Scale for Children-fourth edition and Advanced Test of Attention (ATA), Penn Emotion Recognition Task and Penn Emotion Discrimination Task. The group differences in the facial emotion recognition and discrimination ability were analyzed by using analysis of covariance for the purpose of controlling the visual omission error index of ATA. Results: The children with ADHD showed better recognition of happy and sad faces and less false positive neutral responses than those with ASD. Also, the children with ADHD recognized emotions better than those with ASD on female faces and in extreme facial expressions, but not on male faces or in mild facial expressions. We found no differences in the facial emotion discrimination between the children with ADHD and ASD. Conclusion: Our results suggest that children with ADHD recognize facial emotions better than children with ASD, but they still have deficits. Interventions which consider their different emotion recognition and discrimination abilities are needed.
In this paper, a study on facial movements are analyzed in terms of opposite emotion stimuli by image processing of Kinect facial image. To induce two opposite emotion pairs such as "Sad - Excitement"and "Contentment - Angry" which are oppositely positioned onto Russell's 2D emotion model, both visual and auditory stimuli are given to subjects. Firstly, 31 main points are chosen among 121 facial feature points of active appearance model obtained from Kinect Face Tracking SDK. Then, pixel changes around 31 main points are analyzed. In here, local minimum shift matching method is used in order to solve a problem of non-linear facial movement. At results, right and left side facial movements were occurred in cases of "Sad" and "Excitement" emotions, respectively. Left side facial movement was comparatively more occurred in case of "Contentment" emotion. In contrast, both left and right side movements were occurred in case of "Angry" emotion.
In this paper, we present a FAES(a Facial Animation with Emotion and Speech) system for speech-driven face animation with emotions. We animate face cartoons not only from input speech, but also based on emotions derived from speech signal. And also our system can ensure smooth transitions and exact representation in animation. To do this, after collecting the training data, we have made the database using SVM(Support Vector Machine) to recognize four different categories of emotions: neutral, dislike, fear and surprise. So that, we can make the system for speech-driven animation with emotions. Also, we trained on Korean young person and focused on only Korean emotional face expressions. Experimental results of our system demonstrate that more emotional areas expanded and the accuracies of the emotional recognition and the continuous speech recognition are respectively increased 7% and 5% more compared with the previous method.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.5
/
pp.23-28
/
2022
Today, the online market has grown rapidly due to the development of digital platforms and the pandemic situation. Therefore, unlike the existing offline market, the distinctiveness of the online market has prompted users to check online reviews. It has been established that reviews play a significant part in influencing the user's purchase intention through precedents of several studies. However, the current review writing method makes it difficult for other users to understand the writer's emotions by expressing them through elements like tone and words. If the writer also wanted to emphasize something, it was very cumbersome to thicken the parts or change the colors to reflect their emotions. Therefore, in this paper, we propose a technique to check the user's emotions through facial expression recognition using a camera, to automatically set colors for each emotion using research on existing emotions and colors, and give colors based on the user's intention.
Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.