• Title/Summary/Keyword: Facial Emotions

Search Result 159, Processing Time 0.029 seconds

Facial Color Control based on Emotion-Color Theory (정서-색채 이론에 기반한 게임 캐릭터의 동적 얼굴 색 제어)

  • Park, Kyu-Ho;Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1128-1141
    • /
    • 2009
  • Graphical expressions are continuously improving, spurred by the astonishing growth of the game technology industry. Despite such improvements, users are still demanding a more natural gaming environment and true reflections of human emotions. In real life, people can read a person's moods from facial color and expression. Hence, interactive facial colors in game characters provide a deeper level of reality. In this paper we propose a facial color adaptive technique, which is a combination of an emotional model based on human emotion theory, emotional expression pattern using colors of animation contents, and emotional reaction speed function based on human personality theory, as opposed to past methods that expressed emotion through blood flow, pulse, or skin temperature. Experiments show this of expression of the Facial Color Model based on facial color adoptive technique and expression of the animation contents is effective in conveying character emotions. Moreover, the proposed Facial Color Adaptive Technique can be applied not only to 2D games, but to 3D games as well.

  • PDF

Image Recognition based on Adaptive Deep Learning (적응적 딥러닝 학습 기반 영상 인식)

  • Kim, Jin-Woo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.113-117
    • /
    • 2018
  • Human emotions are revealed by various factors. Words, actions, facial expressions, attire and so on. But people know how to hide their feelings. So we can not easily guess its sensitivity using one factor. We decided to pay attention to behaviors and facial expressions in order to solve these problems. Behavior and facial expression can not be easily concealed without constant effort and training. In this paper, we propose an algorithm to estimate human emotion through combination of two results by gradually learning human behavior and facial expression with little data through the deep learning method. Through this algorithm, we can more comprehensively grasp human emotions.

Development of a Ream-time Facial Expression Recognition Model using Transfer Learning with MobileNet and TensorFlow.js (MobileNet과 TensorFlow.js를 활용한 전이 학습 기반 실시간 얼굴 표정 인식 모델 개발)

  • Cha Jooho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2023
  • Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.

The relationship between autistic features and empathizing-systemizing traits (자폐성향과 공감-체계화능력 간의 관계)

  • Cho, Kyung-Ja;Kim, Jung-K.
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.245-256
    • /
    • 2011
  • This study consists of two sections to figure out the relationship between autistic features and empathizing-systemizing traits. For the first section, the research involved 355 university students to measure their EQ, SQ-R and AQ. As a result, it is found that AQ was negatively correlated to EQ, and D score(relative difference between EQ and SQ-R of the individuals), but it was not significantly related to SQ-R. It means that the subject has high AQ if he has relatively lower EQ than SQ-R. For the second section, the subjects were divided into two groups based on their AQ score; the subjects who had a tendency of autism and the subjects who did not. The test measured how these two groups were different in terms of facial expressions' recognition according to the tendency of autism, facial expression presenting areas(whole face, eyes-alone, mouth-alone) and different types of emotions(basic and complex emotions). As a result, the subjects who had a tendency of autism were lower at judging facial expressions than the subjects who did not. Also, the results showed that the subjects judged better on the condition of basic emotions more than complex emotions, the whole face more than eyes-alone and mouth-alone. Especially, for the eyes-alone condition, the subjects who had a tendency of autism were lower at judging facial expressions than the subjects who did not. This study suggests that empathizing traits and facial expressions' recognition are related to the tendency of autism.

  • PDF

Difficulty in Facial Emotion Recognition in Children with ADHD (주의력결핍 과잉행동장애의 이환 여부에 따른 얼굴표정 정서 인식의 차이)

  • An, Na Young;Lee, Ju Young;Cho, Sun Mi;Chung, Young Ki;Shin, Yun Mi
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.24 no.2
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives : It is known that children with attention-deficit hyperactivity disorder (ADHD) experience significant difficulty in recognizing facial emotion, which involves processing of emotional facial expressions rather than speech, compared to children without ADHD. This objective of this study is to investigate the differences in facial emotion recognition between children with ADHD and normal children used as control. Methods : The children for our study were recruited from the Suwon Project, a cohort comprising a non-random convenience sample of 117 nine-year-old ethnic Koreans. The parents of the study participants completed study questionnaires such as the Korean version of Child Behavior Checklist, ADHD Rating Scale, Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. Facial Expression Recognition Test of the Emotion Recognition Test was used for the evaluation of facial emotion recognition and ADHD Rating Scale was used for the assessment of ADHD. Results : ADHD children (N=10) were found to have impaired recognition when it comes to Emotional Differentiation and Contextual Understanding compared with normal controls (N=24). We found no statistically significant difference in the recognition of positive facial emotions (happy and surprise) and negative facial emotions (anger, sadness, disgust and fear) between the children with ADHD and normal children. Conclusion : The results of our study suggested that facial emotion recognition may be closely associated with ADHD, after controlling for covariates, although more research is needed.

Difference of Facial Emotion Recognition and Discrimination between Children with Attention-Deficit Hyperactivity Disorder and Autism Spectrum Disorder (주의력결핍과잉행동장애 아동과 자폐스펙트럼장애 아동에서 얼굴 표정 정서 인식과 구별의 차이)

  • Lee, Ji-Seon;Kang, Na-Ri;Kim, Hui-Jeong;Kwak, Young-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.27 no.3
    • /
    • pp.207-215
    • /
    • 2016
  • Objectives: This study aimed to investigate the differences in the facial emotion recognition and discrimination ability between children with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Methods: Fifty-three children aged 7 to 11 years participated in this study. Among them, 43 were diagnosed with ADHD and 10 with ASD. The parents of the participants completed the Korean version of the Child Behavior Checklist, ADHD Rating Scale and Conner's scale. The participants completed the Korean Wechsler Intelligence Scale for Children-fourth edition and Advanced Test of Attention (ATA), Penn Emotion Recognition Task and Penn Emotion Discrimination Task. The group differences in the facial emotion recognition and discrimination ability were analyzed by using analysis of covariance for the purpose of controlling the visual omission error index of ATA. Results: The children with ADHD showed better recognition of happy and sad faces and less false positive neutral responses than those with ASD. Also, the children with ADHD recognized emotions better than those with ASD on female faces and in extreme facial expressions, but not on male faces or in mild facial expressions. We found no differences in the facial emotion discrimination between the children with ADHD and ASD. Conclusion: Our results suggest that children with ADHD recognize facial emotions better than children with ASD, but they still have deficits. Interventions which consider their different emotion recognition and discrimination abilities are needed.

Analysis of Facial Movement According to Opposite Emotions (상반된 감성에 따른 안면 움직임 차이에 대한 분석)

  • Lee, Eui Chul;Kim, Yoon-Kyoung;Bea, Min-Kyoung;Kim, Han-Sol
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, a study on facial movements are analyzed in terms of opposite emotion stimuli by image processing of Kinect facial image. To induce two opposite emotion pairs such as "Sad - Excitement"and "Contentment - Angry" which are oppositely positioned onto Russell's 2D emotion model, both visual and auditory stimuli are given to subjects. Firstly, 31 main points are chosen among 121 facial feature points of active appearance model obtained from Kinect Face Tracking SDK. Then, pixel changes around 31 main points are analyzed. In here, local minimum shift matching method is used in order to solve a problem of non-linear facial movement. At results, right and left side facial movements were occurred in cases of "Sad" and "Excitement" emotions, respectively. Left side facial movement was comparatively more occurred in case of "Contentment" emotion. In contrast, both left and right side movements were occurred in case of "Angry" emotion.

On the Implementation of a Facial Animation Using the Emotional Expression Techniques (FAES : 감성 표현 기법을 이용한 얼굴 애니메이션 구현)

  • Kim Sang-Kil;Min Yong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • In this paper, we present a FAES(a Facial Animation with Emotion and Speech) system for speech-driven face animation with emotions. We animate face cartoons not only from input speech, but also based on emotions derived from speech signal. And also our system can ensure smooth transitions and exact representation in animation. To do this, after collecting the training data, we have made the database using SVM(Support Vector Machine) to recognize four different categories of emotions: neutral, dislike, fear and surprise. So that, we can make the system for speech-driven animation with emotions. Also, we trained on Korean young person and focused on only Korean emotional face expressions. Experimental results of our system demonstrate that more emotional areas expanded and the accuracies of the emotional recognition and the continuous speech recognition are respectively increased 7% and 5% more compared with the previous method.

  • PDF

Emotional Expression Technique using Facial Recognition in User Review (사용자 리뷰에서 표정 인식을 이용한 감정 표현 기법)

  • Choi, Wongwan;Hwang, Mansoo;Kim, Neunghoe
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.23-28
    • /
    • 2022
  • Today, the online market has grown rapidly due to the development of digital platforms and the pandemic situation. Therefore, unlike the existing offline market, the distinctiveness of the online market has prompted users to check online reviews. It has been established that reviews play a significant part in influencing the user's purchase intention through precedents of several studies. However, the current review writing method makes it difficult for other users to understand the writer's emotions by expressing them through elements like tone and words. If the writer also wanted to emphasize something, it was very cumbersome to thicken the parts or change the colors to reflect their emotions. Therefore, in this paper, we propose a technique to check the user's emotions through facial expression recognition using a camera, to automatically set colors for each emotion using research on existing emotions and colors, and give colors based on the user's intention.

Emotion Recognition based on Tracking Facial Keypoints (얼굴 특징점 추적을 통한 사용자 감성 인식)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.97-101
    • /
    • 2019
  • Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.