• 제목/요약/키워드: Facial Detection

검색결과 378건 처리시간 0.024초

A Face-Detection Postprocessing Scheme Using a Geometric Analysis for Multimedia Applications

  • Jang, Kyounghoon;Cho, Hosang;Kim, Chang-Wan;Kang, Bongsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권1호
    • /
    • pp.34-42
    • /
    • 2013
  • Human faces have been broadly studied in digital image and video processing fields. An appearance-based method, the adaptive boosting learning algorithm using integral image representations has been successfully employed for face detection, taking advantage of the feature extraction's low computational complexity. In this paper, we propose a face-detection postprocessing method that equalizes instantaneous facial regions in an efficient hardware architecture for use in real-time multimedia applications. The proposed system requires low hardware resources and exhibits robust performance in terms of the movements, zooming, and classification of faces. A series of experimental results obtained using video sequences collected under dynamic conditions are discussed.

활성 윤곽선 모델을 이용한 얼굴 경계선 추출 (Facial Boundary Detection using an Active Contour Model)

  • 장재식;김은이;김항준
    • 전자공학회논문지CI
    • /
    • 제42권1호
    • /
    • pp.79-87
    • /
    • 2005
  • 본 논문에서는 복잡한 환경에서 정확한 얼굴영역의 경계를 추출하기 위한 활성 윤곽선 모델(Active Contour Model)을 제안한다. 제안된 모델에서 윤곽선은 레벨 함수 φ의 제로 레벨 집합으로 표현되고, 레벨 집합의 편미분 방정식을 통해 진화된다. 이 때, 제안된 모델에서는 윤곽선의 진화와 종교를 위해 2차원 가우시안 모델로 표현되는 피부색 정보를 이용한다. 이를 통해 잡음 및 다양한 포즈를 가지는 복잡한 영상에서도 정확한 얼굴 경계선을 얻을 수 있는 강건한 추출 방법이 구현된다. 제안된 방법의 유효성을 평가하기 위해서 다양한 영상에 대해서 실험이 이루어졌으며, 그 결과를 geodesic 활성 윤곽선 모델의 결과와 비교하였다. 실험결과는 제안된 방법의 보다 나은 성능을 보여준다.

영상객체 spFACS ASM 알고리즘을 적용한 얼굴인식에 관한 연구 (ASM Algorithm Applid to Image Object spFACS Study on Face Recognition)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.1-12
    • /
    • 2016
  • Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.

Parallel Multi-task Cascade Convolution Neural Network Optimization Algorithm for Real-time Dynamic Face Recognition

  • Jiang, Bin;Ren, Qiang;Dai, Fei;Zhou, Tian;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4117-4135
    • /
    • 2020
  • Due to the angle of view, illumination and scene diversity, real-time dynamic face detection and recognition is no small difficulty in those unrestricted environments. In this study, we used the intrinsic correlation between detection and calibration, using a multi-task cascaded convolutional neural network(MTCNN) to improve the efficiency of face recognition, and the output of each core network is mapped in parallel to a compact Euclidean space, where distance represents the similarity of facial features, so that the target face can be identified as quickly as possible, without waiting for all network iteration calculations to complete the recognition results. And after the angle of the target face and the illumination change, the correlation between the recognition results can be well obtained. In the actual application scenario, we use a multi-camera real-time monitoring system to perform face matching and recognition using successive frames acquired from different angles. The effectiveness of the method was verified by several real-time monitoring experiments, and good results were obtained.

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

스마트 전시환경에서 순차적 인공신경망에 기반한 감정인식 모델 (Emotion Detection Model based on Sequential Neural Networks in Smart Exhibition Environment)

  • 정민규;최일영;김재경
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.109-126
    • /
    • 2017
  • 최근 지능형 서비스를 제공하기 위해 감정을 인식하기 위한 많은 연구가 진행되고 있다. 특히, 전시 분야에서 관중에게 개인화된 서비스를 제공하기 위해 얼굴표정을 이용한 감정인식 연구가 수행되고 있다. 그러나 얼굴표정은 시간에 따라 변함에도 불구하고 기존연구는 특정시점의 얼굴표정 데이터를 이용한 문제점이 있다. 따라서 본 연구에서는 전시물을 관람하는 동안 관중의 얼굴표정의 변화로부터 감정을 인식하기 위한 예측 모델을 제안하였다. 이를 위하여 본 연구에서는 시계열 데이터를 이용하여 감정예측에 적합한 순차적 인공신경망 모델을 구축하였다. 제안된 모델의 유용성을 평가하기 위하여 일반적인 표준인공신경망 모델과 제안된 모델의 성능을 비교하였다. 시험결과 시계열성을 고려한 제안된 모델의 예측이 더 뛰어남으로 보였다.

모바일 아바타 전송을 위한 얼굴 영역 검출 및 압축에 관한 연구 (A Study on Facial Region Detection and Compression for Transmission of Mobile Avatar)

  • 최재영;황승호;양영규;황보택근
    • 한국멀티미디어학회논문지
    • /
    • 제8권7호
    • /
    • pp.916-923
    • /
    • 2005
  • 기존의 음성 통신 도구로 사용되던 휴대 전화는 최근 들어 데이터 통신 기기로서의 그 역할이 증대되고 있다. 그러나 늘어난 대역폭으로 인하여 멀티미디어 컨텐츠를 전송할 만한 충분한 능력이 되었지만 여전히 여러 컨텐츠들을 이용하기에는 이용자의 통신 및 정보 이용료의 부담이 크다 이에 본 연구에서는 모바일 아바타 생성을 위한 얼굴 영상의 전송이라는 특수한 상황을 적용하여 일반적인 압축방법을 통하여 얻을 수 있는 압축률보다 높은 성능의 압축 방법을 제안함으로써 컨텐츠 이용자비 정보 이용 부담 및 통신 트래픽을 줄이고자 한다. 제안한 방법은 웨이블릿으로 분해된 영상의 대역간 공간적 상관관계뿐만 아니라 얼굴 영역 검출을 통하여 얻은 웨이블릿 영상의 중요계수 위치를 참조함으로써 모바일 아바타 생성에 적합한 주요영역별 압축율을 차등화 하고자 하였다. 실험의 결과를 통하여 기존의 EZW 압축 방법보다 입력 영상의 중요계수 위치 정보를 사전에 파악하여 차등압축하는 방법이 모바일 아바타 생성을 위한 시스템에 효율적임을 확인하였다.

  • PDF

컬러 정보를 이용한 실시간 표정 데이터 추적 시스템 (Realtime Facial Expression Data Tracking System using Color Information)

  • 이윤정;김영봉
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.159-170
    • /
    • 2009
  • 온라인 기반의 3차원 얼굴 애니메이션을 위해서 실시간으로 얼굴을 캡처하고 표정 데이터를 추출하는 것은 매우 중요한 작업이다. 최근 동영상 입력을 통해 연기자의 표정을 캡처하고 그것을 그대로 3차원 얼굴 모델에 표현하는 비전 기반(vision-based) 방법들에 대한 연구가 활발히 이루어지고 있다. 본 논문 에서는 실시간으로 입력되는 동영상으로부터 얼굴과 얼굴 특징점들을 자동으로 검출하고 이를 추적하는 시스템을 제안한다. 제안 시스템은 얼굴 검출과 얼굴 특징점 추출 및 추적과정으로 구성된다. 얼굴 검출은 3차원 YCbCr 피부 색상 모델을 이용하여 피부 영역을 분리하고 Harr 기반 검출기를 이용해 얼굴 여부를 판단한다. 얼굴 표정에 영향을 주는 눈과 입 영역의 검출은 밝기 정보와 특정 영역의 고유한 색상 정보를 이용한다. 검출된 눈과 입 영역에서 MPEG-4에서 정의한 FAP를 기준으로 10개의 특징점을 추출하고, 컬러 확률 분포의 추적을 통해 연속 프레임에서 특징점들의 변위를 구한다 실험 결과 제안 시스템 은 약 초당 8 프레임으로 표정 데이터를 추적하였다.

적외선 조명 카메라를 이용한 시선 위치 추적 시스템 (Gaze Detection System by IR-LED based Camera)

  • 박강령
    • 한국통신학회논문지
    • /
    • 제29권4C호
    • /
    • pp.494-504
    • /
    • 2004
  • 사용자의 시선 위치를 파악하는 연구는 많은 응용분야를 가지고 지난 몇년간 눈부시게 발전되어 왔다. 기존의 대부분 연구에서는 영상 처리 방법만에 의존하여 시선 위치 추적 연구를 수행하였기 때문에 처리 속도도 늦고 많은 사용 제약을 가지는 문제점이 있었다. 이 논문에서는 적외선 조명이 부착된 단일 카메라를 이용한 컴퓨터 비전 시스템으로 시선 위치 추적 연구를 수행하였다. 사용자의 시선 위치를 파악하기 위해서는 얼굴 특징점의 위치를 추적해야하는데, 이를 위하여 이 논문에서는 적의선 기반 카메라와 SVM(Support Vector Machine) 알고리즘을 사용하였다. 사용자가 모니터상의 임의의 지점을 쳐다볼 때 얼굴 특징점의 3차원 위치는 3차원 움직임량 추정(3D motion estimation) 및 아핀 변환(affine transformation)에 의해 계산되어 질 수 있다. 얼굴 특징점의 변화된 3차원 위치가 계산되면. 이로부터 3개 이상의 얼굴 특징점으로부터 생성되는 얼굴 평면 및 얼굴 평면의 법선 벡터가 구해지게 되며, 이러한 법선 백터가 모니터 스크린과 만나는 위치가 사용자의 시선위치가 된다. 또한. 이 논문에서는 보다 정확한 시선 위치를 파악하기 위하여 사용자의 눈동자 움직임을 추적하였으며 이를 위하여 신경망(다층 퍼셉트론)을 사용하였다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 약 4.2cm의 최소 자승 에러성능을 나타냈다.

가중치 합산 기반 안면인식 특징점 저장 알고리즘 연구 (Study on Weight Summation Storage Algorithm of Facial Recognition Landmark)

  • 조성욱;유영균;곽광진;박정민
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.163-170
    • /
    • 2022
  • 본 논문은 실생활 속 정제되지 않은 입력으로 인해 안면의 특징점을 추출하여 객체 인식 모델의 이상적인 성능과 속도를 보증해주지 못하는 문제점을 가중치 합산을 통한 저장 알고리즘을 통해 개선하는 방법을 소개한다. 많은 안면인식 프로세스들은 이상적인 상황에서의 정확도를 보장해주지만, 실생활에서 발생할 수 있는 수많은 방해요인에 대해서는 대처하지 못한다는 문제점이 주목받고 있으며 이는 곧 보안과 밀접하게 관련된 안면인식 프로세스에서 심각한 문제를 발생할 수도 있다. 본 논문에서는 사람의 고유한 특징점은 사진의 구도 등의 여러 변수가 있어도 결국 평균적인 하나의 형태를 띤다는 점을 이용하여 입력으로 추출된 특징점을 여러 방해 요인에 과적합 되어있지 않은 소수의 특징점과 비교를 통해 실시간으로 빠르게, 그리고 정확하게 안면인식을 할수 있는 방법을 가중치 합산방식을 통하여 제시한다.