Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.496-498
/
2001
Snake 모델(active contour model)은 초기값을 설정해주면 자동으로 임의의 물체의 윤곽을 찾아내는 알고리즘으로 영상에서 특정 영역을 분할하여 할 때 많이 이용되고 있다. 본 논문에서는 칼라 영상에서 얼굴과 얼굴의 특징점을 찾는 방법으로 이 알고리즘을 적용한다. 특히, 주어진 영상의 RGB 값을 정규화(normalization) 해주는 전처리 과정을 통해 얼굴의 특징점 후보 영역을 얻어내는 초기 값을 설정해주어야 하는 과정을 생략해주고 보다 정확한 값을 얻을 수 있도록 구현한다. RGB 값을 이용한 정규화 과정을 적용한 방법과 적용하지 않은 방법을 구현한 결과를 비교해줌으로써, 정규화 과정을 거친 방법의 성능이 더 우수함을 보여준다.
Journal of the Korean Society of Clothing and Textiles
/
v.30
no.5
s.153
/
pp.684-698
/
2006
This study consists of the stimuli of a female model in her twenties with twenty-two different facial make-up. The subjects of this study are one thousand low hundred ninety seven purposive sampled-male and female grown-ups throughout the country. The period of the research was the December of 2004, one month, and the materials were analyzed by factor analysis, T-examination, analysis of variance, Cronbach's a, Duncan's Multiple Range Test. Here follows the result of the research. Firstly, Familiarity, Intelligence, Fitness, Charm, Tradition and Youth were came out as the result of factor analysis of make-up color image perception. Secondly, in age/lip color perception of bright skin tone, there was difference of Intelligence and Charm. In age/image make-up perception of bright skin tone, there was difference of Familiarity, Charm especially on Cool image make-up. Thirdly in habitant/lip color perception of dark skin tone, there was difference of Intelligence and Charm. In habitant/image make-up perception of bright skin tone, there was difference of Familiarity, Charm and of bright skin tone, Intelligence, Charm, Tradition and Youth. Fourthly, there were the interaction effects on the gender of perceivers and lip color and image make-up of perceivers habitant. Lastly, in preference rate, lip color was more affected by age and image make-up were more affected by perceivers habitant.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.3
/
pp.112-118
/
2009
Skin color segmentation techniques have been widely utilized for face/hand detection and tracking in many applications such as a diagnosis system using facial information, human-robot interaction, an image retrieval system. In case of a video image, it is common that the skin color model for a target is updated every frame for the robust target tracking against illumination change. As for a single image, however, most of studies employ a fixed skin color model which may result in low detection rate or high false positive errors. In this paper, we propose a novel method for effective skin color segmentation in a single image, which modifies the conditions for skin color segmentation iteratively by the image feedback of segmented skin color region in a given image.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.5
/
pp.697-704
/
2018
Since the face in image content corresponds to individual information that can distinguish a specific person from other people, it is important to accurately detect faces not hidden in an image. In this paper, we propose a method to accurately detect a face from input images using a deep learning algorithm, which is one of the machine learning methods. In the proposed method, image input via the red-green-blue (RGB) color model is first changed to the luminance-chroma: blue-chroma: red-chroma ($YC_bC_r$) color model; then, other regions are removed using the learned skin color model, and only the skin regions are segmented. A CNN model-based deep learning algorithm is then applied to robustly detect only the face region from the input image. Experimental results show that the proposed method more efficiently segments facial regions from input images. The proposed face area-detection method is expected to be useful in practical applications related to multimedia and shape recognition.
Camera position information from 2D face image is very important for that make the virtual 3D face model synchronize to the real face at view point, and it is also very important for any other uses such as: human computer interface (face mouth), automatic camera control etc. We present an algorithm to detect human face region and mouth, based on special color features of face and mouth in $YC_bC_r$ color space. The algorithm constructs a mouth feature image based on $C_b\;and\;C_r$ values, and use pattern method to detect the mouth position. And then we use the geometrical relationship between mouth position information and face side boundary information to determine the camera position. Experimental results demonstrate the validity of the proposed algorithm and the Correct Determination Rate is accredited for applying it into practice.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.2
s.308
/
pp.63-71
/
2006
Denoising and reconstruction of color images are extensively studied in the field of computer vision and image processing. Especially, denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noise on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps: training of canonical eigenface space using PCA, automatic extraction of facial features using active appearance model, relishing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denoising method maintains the structural characteristics of input faces, while efficiently removing complex color noise.
Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Khudaybergenov, Timur;Kim, Min Soo;Woo, Deok Gun;Kim, Jeong Uk
International Journal of Internet, Broadcasting and Communication
/
v.12
no.2
/
pp.1-7
/
2020
The secure access the lighting, Heating, ventilation, and air conditioning (HVAC), fire safety, and security control boxes of building facilities is the primary objective of future smart buildings. This paper proposes an authorized user access to the electrical, lighting, fire safety, and security control boxes in the smart building, by using color grid coded optical camera communication (OCC) with face recognition Technologies. The existing CCTV subsystem can be used as the face recognition security subsystem for the proposed approach. At the same time a smart device attached camera can used as an OCC receiver of color grid code for user access authentication data sent by the control boxes to proceed authorization. This proposed approach allows increasing an authorization control reliability and highly secured authentication on accessing building facility infrastructure. The result of color grid code sequence received by the unauthorized person and his face identification allows getting good results in security and gaining effectiveness of accessing building facility infrastructure. The proposed concept uses the encoded user access authentication information through control box monitor and the smart device application which detect and decode the color grid coded informations combinations and then send user through the smart building network to building management system for authentication verification in combination with the facial features that gives a high protection level. The proposed concept is implemented on testbed model and experiment results verified for the secured user authentication in real-time.
Kim, Hyun-Woo;Park, Joo-Yong;Lee, Jeong-Jick;Yoon, Young-Ro
Journal of Biomedical Engineering Research
/
v.35
no.2
/
pp.14-18
/
2014
This study is about e-Book program based on human-computer interaction(HCI) system for physically handicapped person. By acquiring background knowledge of HCI, we know that if we use vision-based interface we can replace current computer input devices by extracting any characteristic point and tracing it. We decided betweeneyes as a characteristic point by analyzing facial input image using webcam. But because of three-dimensional structure of glasses, the person who is wearing glasses wasn't suitable for tracing between-eyes. So we changed characteristic point to the bridge of the nose after detecting between-eyes. By using this technique, we could trace rotation of head in real-time regardless of glasses. To test this program's usefulness, we conducted an experiment to analyze the test result on actual application. Consequently, we got 96.5% rate of success for controlling e-Book under proper condition by analyzing the test result of 20 subjects.
Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.1
/
pp.75-83
/
2008
We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.