• 제목/요약/키워드: Facial Color Model

검색결과 71건 처리시간 0.026초

자연 영상에서 얼굴영역 검출 알고리즘 (Face region detection algorithm of natural-image)

  • 이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 2014
  • 본 논문에서는 자연 영상에서 피부색 색상과 채도를 기초로 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명 보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본 영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 10장의 자연 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.

HCI를 위한 트리 구조 기반의 자동 얼굴 표정 인식 (Automatic Facial Expression Recognition using Tree Structures for Human Computer Interaction)

  • 신윤희;주진선;김은이;;;박세현;정기철
    • 한국산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.60-68
    • /
    • 2007
  • 본 논문에서는 자동으로 사용자의 얼굴 표정을 인식할 수 있는 시스템을 제안한다. 제안된 시스템은 휴리스틱 정보를 기반으로 설계된 트리 구조를 이용하여 행복, 역겨움, 놀람의 감정과 무표정을 인식한다. 카메라로부터 영상이 들어오면 먼저 얼굴 특징 검출기에서 피부색 모델과 연결성분 분석을 이용하여 얼굴 영역을 획득한다. 그 후에 신경망 기반의 텍스처 분류기를 사용하여 눈 영역과 비 눈 영역으로 구분한 뒤 눈의 중심 영역과 에지 정보를 기반으로 하여 눈, 눈썹, 입 등의 얼굴 특징을 찾는다. 검출된 얼굴 특징들은 얼굴 표정 인식기에 사용되며 얼굴 인식기는 이를 기반으로 한 decision tree를 이용하여 얼굴 감정을 인식한다. 제안된 방법의 성능을 평가하기 위해 MMI JAFFE, VAK DB에서 총 180장의 이미지를 사용하여 테스트하였고 약 93%의 정확도를 보였다.

  • PDF

얼굴의 포즈 상태와 오토마타 기법을 이용한 헤드 제스처 인식 (Head Gesture Recognition using Facial Pose States and Automata Technique)

  • 오승택;전병환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권12호
    • /
    • pp.947-954
    • /
    • 2001
  • 본 논문에서는 인식된 얼굴의 포즈 상태 열에 오토마타 기법을 적용하여 다양한 헤드 제스처 를 인식하는 방법을 제안한다. 얼굴 영역의 추출에는 Yl7외 I성분인 최적의 얼굴색 정보와 적응적인 차영상 정보를 이용하며. 눈 영역 추출에는 소벨 연산자와 투영 기법. 그리고 눈의 기하학적 위치 정보를 이용 한다 얼굴의 상태 인식에는 계층적인 특징분석 방법을 사용하며, 인식된 얼굴 상태 열에 오토마타 기법을 적용하여 13가지 제스처; 준비, 상측, 하측, 좌측, 우측, 전진, 후퇴, 좌 윙크, 우 윙크, 좌 더블 윙크 우 더블 윙크, 긍정, 부정제스처를 인식한다. 총 8명으로부터 1,488 프레임의 영상을 취득하여 실험한 결과, 99.3%의 얼굴 영역 추출률 95.3%, 의 눈 영역 추출률, 94.1% 의 얼굴 상태 인식률. 그리고 93.3%의 헤드제 스처 인식률을 얻었다

  • PDF

얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션 (3D Facial Animation with Head Motion Estimation and Facial Expression Cloning)

  • 권오륜;전준철
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.311-320
    • /
    • 2007
  • 본 논문에서는 강건한 얼굴 포즈 추정과 실시간 표정제어가 가능한 비전 기반 3차원 얼굴 모델의 자동 표정 생성 방법 및 시스템을 제안한다. 기존의 비전 기반 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 반영하지 못하고 얼굴 표정 생성에 초점을 맞추고 있다. 그러나, 얼굴 포즈를 정확히 추정하여 반영하는 작업은 현실감 있는 얼굴 애니메이션을 위해서 중요한 이슈로 인식되고 있다. 본 연구 에서는 얼굴 포즈추정과 얼굴 표정제어가 동시에 가능한 통합 애니메이션 시스템을 제안 하였다. 제안된 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출은 비모수적 HT 컬러 모델과 템플릿 매칭을 통해 수행된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 얼굴 모션 추정을 위하여 3차원 실린더 모델을 검출된 얼굴 영역에 투영하고 광류(optical flow) 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 주요 얼굴 특징점을 검출하며 광류 알고리즘에 의하여 특징점을 추적한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수(parameters)를 계산한다. 결국 얼굴 표정 복제는 두 개의 정합과정을 통해 수행된다. 애니메이션 매개변수 3차원 얼굴 모델의 주요 특징점(제어점)의 이동은 획득된 애니메이션 매개변수를 적용하여 수행하며, 정점 주위의 부가적 정점의 위치는 RBF(Radial Basis Function) 보간법을 통해 변형한다. 실험결과 본 논문에서 제안된 비전기반 애니메이션 시스템은 비디오 영상으로부터 강건한 얼굴 포즈 추정과 얼굴의 표정변화를 잘 반영하여 현실감 있는 애니메이션을 생성함을 입증할 수 있었다.

Identification of cranial nerve ganglia using sectioned images and three-dimensional models of a cadaver

  • Kim, Chung Yoh;Park, Jin Seo;Chung, Beom Sun
    • The Korean Journal of Pain
    • /
    • 제35권3호
    • /
    • pp.250-260
    • /
    • 2022
  • Background: Cranial nerve ganglia, which are prone to viral infections and tumors, are located deep in the head, so their detailed anatomy is difficult to understand using conventional cadaver dissection. For locating the small ganglia in medical images, their sectional anatomy should be learned by medical students and doctors. The purpose of this study is to elucidate cranial ganglia anatomy using sectioned images and three-dimensional (3D) models of a cadaver. Methods: One thousand two hundred and forty-six sectioned images of a male cadaver were examined to identify the cranial nerve ganglia. Using the real color sectioned images, real color volume model having a voxel size of 0.4 × 0.4 × 0.4 mm was produced. Results: The sectioned images and 3D models can be downloaded for free from a webpage, anatomy.dongguk.ac.kr/ganglia. On the images and model, all the cranial nerve ganglia and their whole course were identified. In case of the facial nerve, the geniculate, pterygopalatine, and submandibular ganglia were clearly identified. In case of the glossopharyngeal nerve, the superior, inferior, and otic ganglia were found. Thanks to the high resolution and real color of the sectioned images and volume models, detailed observation of the ganglia was possible. Since the volume models can be cut both in orthogonal planes and oblique planes, advanced sectional anatomy of the ganglia can be explained concretely. Conclusions: The sectioned images and 3D models will be helpful resources for understanding cranial nerve ganglia anatomy, for performing related surgical procedures.

감정 인식을 위한 얼굴 영상 분석 알고리즘 (Facial Image Analysis Algorithm for Emotion Recognition)

  • 주영훈;정근호;김문환;박진배;이재연;조영조
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.801-806
    • /
    • 2004
  • 감성 인식 기술은 사회의 여러 분야에서 요구되고 있는 필요한 기술이지만, 인식 과정의 어려움으로 인해 풀리지 않는 문제로 낡아있다. 특히 얼굴 영상을 이용한 감정 인식 기술에서 얼굴 영상을 분석하는 기술 개발이 필요하다. 하지만 얼굴분석을 어려움으로 인해 많은 연구가 진행 중이다. 된 논문에서는 감정 인식을 위한 얼굴 영상 분석 알고리즘을 제안한다. 제안된 얼굴 영상 분석 알고리즘은 얼굴 영역 추출 알고리즘과 얼굴 구성 요소 추출 알고리즘으로 구성된다. 얼굴 영역 추출 알고리즘은 다양한 조명 조건에서도 강인하게 얼굴 영역을 추출할 수 있는 퍼지 색상 필터를 사용한 방법을 제안하였다. 또한 얼굴 구성 요소 추출 알고리즘에서는 가상 얼굴 모형을 이용함으로써 보다 정확하고 빠른 얼굴 구성 요소 추출이 가능하게 하였다. 최종적으로 모의실험을 통해 각 알고리즘들의 수행 과정을 살펴보았으며 그 성능을 평가하였다.

Face detection using active contours

  • Chang, Jae-Sik;Lee, Mu-Youl;Moon, Chae-Hyun;Park, Hye-Sun;Lee, Kyung-Mi;Kim, Hang-Joon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1515-1518
    • /
    • 2002
  • This paper proposes an active contour model to detect facial regions in a given image. Accordingly we use the color information human faces which is represented by a skin color model. We evolve the active contour using the level set method which allows for cusps, corners, and automatic topological changes. Experimental results show the effectiveness of the proposed method.

  • PDF

딥러닝 기반 손상된 흑백 얼굴 사진 컬러 복원 (Deep Learning based Color Restoration of Corrupted Black and White Facial Photos)

  • 신재우;김종현;이정;송창근;김선정
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-9
    • /
    • 2018
  • 본 논문에서는 손상된 흑백 얼굴 이미지를 컬러로 복원하는 방법을 제안한다. 기존 연구에서는 오래된 증명사진처럼 손상된 흑백 사진에 컬러화 작업을 하면 손상된 영역 주변이 잘못 색칠되는 경우가 있었다. 이와 같은 문제를 해결하기 위해 본 논문에서는 입력받은 사진의 손상된 영역을 먼저 복원한 후 그 결과를 바탕으로 컬러화를 수행하는 방법을 제안한다. 본 논문의 제안 방법은 BEGAN(Boundary Equivalent Generative Adversarial Networks) 모델 기반 복원과 CNN(Convolutional Neural Network) 기반 컬러화의 두 단계로 구성된다. 제안하는 방법은 이미지 복원을 위해 DCGAN(Deep Convolutional Generative Adversarial Networks) 모델을 사용한 기존 방법들과 달리 좀 더 선명하고 고해상도의 이미지 복원이 가능한 BEGAN 모델을 사용하고, 그 복원된 흑백 이미지를 바탕으로 컬러화 작업을 수행한다. 최종적으로 다양한 유형의 얼굴 이미지와 마스크에 대한 실험 결과를 통해 기존 연구에 비해 많은 경우에 사실적인 컬러 복원 결과를 보여줄 수 있음을 확인하였다.

사상체질 판별을 위한 측면 얼굴 이미지에서의 특징 검출 (Side Face Features' Biometrics for Sasang Constitution)

  • 장천;이기정;황보택근
    • 인터넷정보학회논문지
    • /
    • 제8권6호
    • /
    • pp.155-167
    • /
    • 2007
  • 사상의학에서는 사람을 네 종류로 구분하며, 한의사들은 종종 이 네 종류에 기반을 두어 특별한 건강 정보와 치료 방법을 제안한다. 얼굴의 특징 비율(표 1)은 사상체질을 판단하는데 있어서 매우 중요한 기준으로 사용되는데, 본 논문에서는 측면얼굴에서 특징 비율을 추출하기 위한 시스템을 제안하였다. 특징 비율을 얻기 위해서는 두 가지를 고려하여야 한다. 하나는 대표 특징들을 선택하는 것이고, 다른 하나는 측면 얼굴 이미지에서 효과적으로 관심 영역을 검출하고, 정확하게 특징 비율을 계산하는 것이다. 논 논문에서 제시한 시스템에서는 적응형 색상 모델을 사용하여 배경에서 측면 얼굴을 분리하였고, 관심 영역 검출을 위해서 기하 모델에 기반한 방법이 사용되었다. 또한 이미지 크기와 머리 포즈에 따른 이미지 변화에 의해서 야기되는 에러 분석을 제시하였다. 제시한 시스템의 성능을 평가하기 위하여 173명의 한국인 왼쪽 얼굴 사진을 이용하여 시스템을 테스트하였고, 정면 사진과 측면 사진을 함께 사용하였을 경우 정면 사진만을 사용한 경우보다 17.99%의 성능 향상을 나타내었다.

  • PDF

얼굴 추적을 위한 병렬처리 시스템의 설계 (Design of Parallel Processing System for Face Tracking)

  • 김상호;서영진;김경남;고종국
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (3)
    • /
    • pp.765-767
    • /
    • 1998
  • Many application in human computer interaction(HCI) require tacking a human face and facial features. In this paper we propose efficient parallel processing system for face tracking under heterogeneous networked. To track a face in the video image we use the skin color information and connected components. In terms of parallelism we choose the master-slave model which has thread for each processes, master and slaves, The threads are responsible for real computation in each process. By placing queues between the threads we give flexibility of data flowing

  • PDF