Applying image processing techniques to education, the face of the learner is photographed, and expression and movement are detected from video, and the system which estimates degree of concentration of the learner is developed. For one learner, the measuring system is designed in terms of estimating a degree of concentration from direction of line of learner's sight and condition of the eye. In case of multiple learners, it must need to measure each concentration level of all learners in the classroom. But it is inefficient because one camera per each learner is required. In this paper, position in the face region is estimated from video which photographs the learner in the class by the difference between frames within the motion direction. And the system which detects the face direction by the face part detection by template matching is proposed. From the result of the difference between frames in the first image of the video, frontal face detection by Viola-Jones method is performed. Also the direction of the motion which arose in the face region is estimated with the migration length and the face region is tracked. Then the face parts are detected to tracking. Finally, the direction of the face is estimated from the result of face tracking and face parts detection.
Proceedings of the Korea Contents Association Conference
/
2003.11a
/
pp.223-226
/
2003
When we detect side-view face in color image, we decide a candidate face region using skin-tone color, and confirm to the face by template matching. Cang Wei use a left and a right template of face, calculate to similarity value by hausdorff method, and decide the final side-view face. It has a characteristic that side-view face is wide spreading neck region. To get exactly result, face region is separated vertically by 3 pixel unit, and matched template. In this paper, we assume that a side-view face is a right side-view or a left side-view face. We separate a half of the candidate face region vertically, and regard a left side as left candidate face, a right side as right candidate face by template matching. This method detect faster than Gang Wei method.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.2
/
pp.81-96
/
2024
This study analyzed the differences in the effects on entrepreneurship and entrepreneurial willingness of college students under the coronavirus pandemic by dividing theoretical education into practical education, face-to-face education, and non-face-to-face education, and analyzed the differences in the effects on entrepreneurship and entrepreneurship willingness according to the education method. This study conducted entrepreneurship education for 552 students at a comprehensive university in Chungcheong-do, Korea, and analyzed the sample by dividing it into theoretical and practical education, face-to-face education, and non-face-to-face education. In addition, a two-way repeated measures ANOVA was conducted to determine whether there were differences in the entrepreneurship education course operation form according to the pre- and post-education time points. The results showed that, first, the difference between the effectiveness of entrepreneurship education before and after theoretical and practical education was significant, and the entrepreneurship of practical education was higher than that of theoretical education after education. In the test of pre- and post-training differences in entrepreneurial intention, the difference in effectiveness was significant only in practical training. Second, the results of the repeated measures ANOVA analysis of the course operation type of theoretical and practical courses according to the difference between the pre- and post-education time points showed that there were differences in the entrepreneurship effectiveness of theoretical and practical courses according to the time point of education. Third, the difference in the effectiveness of entrepreneurship education according to face-to-face and non-face-to-face education was significant, and only the effect of non-face-to-face education on entrepreneurial intention was significant before and after education. Fourth, the results of repeated measures ANOVA analysis of face-to-face and non-face-to-face course operation type showed that the effect of face-to-face and non-face-to-face entrepreneurship education differed depending on the time of education. The pre-post difference in entrepreneurial intention was significant only for the non-face-to-face program. The implication of this study is that in order to increase the effectiveness of entrepreneurship and entrepreneurial will among university students, it is necessary to expand the amount of practical classes in which students actively participate in activities related to entrepreneurship. In addition, in order to increase the effectiveness of entrepreneurial will, a non-face-to-face education method that utilizes the metaverse space and increases the role of each student can contribute to increasing the effectiveness of entrepreneurial will.
International journal of advanced smart convergence
/
v.8
no.4
/
pp.104-112
/
2019
This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation forthe identification of a face shape. The proposed algorithm uses face shape asinput information in a single camera environment and divides only face area through preprocessing process. However, it is not easy to accurately recognize the face area that is sensitive to lighting changes and has a large degree of freedom, and the error range is large. In this paper, we separated the background and face area using the brightness difference of the two images to increase the recognition rate. The brightness difference between the two images means the difference between the images taken under the bright light and the images taken under the dark light. After separating only the face region, the face shape is recognized by using the self-organization feature map (SOFM) algorithm. SOFM first selects the first top neuron through the learning process. Second, the highest neuron is renewed by competing again between the highest neuron and neighboring neurons through the competition process. Third, the final top neuron is selected by repeating the learning process and the competition process. In addition, the competition will go through a three-step learning process to ensure that the top neurons are updated well among neurons. By using these SOFM neural network algorithms, we intend to implement a stable and robust real-time face shape recognition system in face shape recognition.
Journal of the Korea Institute of Information Security & Cryptology
/
v.23
no.4
/
pp.737-742
/
2013
The surveillance system has been developed to be intelligent which can judge and cope by itself using human recognition technique. The existing face recognition is excellent at a short distance but recognition rate is reduced at a long distance. In this paper, we analyze the performance of face recognition according to interpolation and face recognition algorithm in face recognition using the multiple distance face images to training. we use the nearest neighbor, bilinear, bicubic, Lanczos3 interpolations to interpolate face image and PCA and LDA to face recognition. The experimental results show that LDA-based face recognition with bilinear interpolation provides performance in face recognition.
The purpose of this study was to investigate the relationship between women's face satisfaction and makeup satisfaction, to disclose the differences of makeup satisfaction according to demographic variables, and to examine how makeup satisfaction was influenced by face satisfaction and demographic variables. The subjects were 200 women over age 17 living in Seoul and its peripheral areas. The results of this study were as follows: Face satisfaction were drawn three factors. Factor 1 was face contour satisfaction, Factor 2 was skin satisfaction, and Factor 3 was lips and eyes satisfaction. There were significant positive relationship between factors of face satisfaction and makeup satisfaction. Also, the face contour satisfaction was in positive correlation with satisfaction of features, and the skin satisfaction was in positive correlation with that of features. There were significant positive correlations between makeup satisfaction and face shape, eyes, nose, lips, chin, and cheek bone satisfaction. Face satisfaction didn't show significant difference according to demographic variables, but makeup satisfaction showed significant difference according to age and occupation. Face satisfaction was influenced by the facial face, clarity of skin, elasticity of skin, skin color, and ages. The explanatory power of the 4 variables were 24.5%. Makeup satisfaction was influenced by lips and eyes satisfaction, ages, and skin care level. The explanatory power of the 3 variables were 13.3%.
Journal of Korean Society of Industrial and Systems Engineering
/
v.44
no.3
/
pp.176-191
/
2021
Non-face-to-face lectures have become a necessity rather than an option since COVID-19, and in order to improve the quality of university education, it is necessary to explore the properties of non-face-to-face lectures and make active efforts to improve them. This study, focusing on this, aims to provide basic data necessary for decision-making for non-face-to-face lecture design by analyzing the relative importance and execution satisfaction of non-face-to-face lecture attributes for professors and students. Based on previous research, a questionnaire was constructed by deriving 4 factors from 1st layer and 17 from 2nd layer attributes of non-face-to-face lectures. A total of 180 valid samples were used for analysis, including 60 professors and 120 students. The importance of the non-face-to-face lecture properties was calculated by obtaining the weights for each stratified element through AHP(Analytic Hierachy Process) analysis, and performance satisfaction was calculated through statistical analysis based on the Likert 5-point scale. As a result of the AHP analysis, both the professor group and the student group had the same priority for the first tier factors, but there was a difference in the priorities between the second tier factors, so it seems necessary to discuss this. As a result of the IPA(Importance Performance Analysis) analysis, the professor group selected the level of interaction as an area to focus on, and it was confirmed that research and investment in teaching methods for smooth interaction are necessary. The student group was able to confirm that it is urgent to improve and invest in the current situation so that the system can be operated stably by selecting the system stability. This study uses AHP analysis for professors and students groups to derive relative importance and priority, and calculates the IPA matrix using IPA analysis to establish the basis for decision-making on future face-to-face and non-face-to-face lecture design and revision. It is meaningful that it was presented.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.3
/
pp.499-505
/
2003
This paper proposes methods to extract face elements and facial characteristics points for face recognition. We select a candidate region of the face elements with geometrical information between them inside the extracted face region with skin color and extract them using their inherent features. The facial characteristics to be applied to face recognition is expressed with geometrical relation such as distance and angle between the extracted face elements. Experiment results shows good performance to extract of face elements.
Daily science classes, which have been continued as part of the spread of participatory science culture, has taken the lead in popularizing science as an effective out-of-school experiential and research activity. However, due to the recent COVID-19 situation, daily science classes have also become an environment in which there is no choice but to switch to non-face-to-face or to combine face-to-face and non-face-to-face education. Therefore, in this study, we examine how elementary school students participating in the non-face-to-face daily science class program change their usual fields of interest, perception of science and technology, interest about science, and scientific competency. In addition, the educational effectiveness of the non-face-to-face daily science class improved by comparing the differences in perceptions of students and parents, and future operation plans were sought. As a result of the study, after participating in the non-face-to-face daily science class program, students' interest in science and technology development, future technology, environmental pollution, and social media increased, and their interest in games decreased. Also, students' interest in science and technology activities, interest in science, and scientific competency also increased. This shows that non-face-to-face daily science class education is effective. Therefore, it was suggested that it is necessary to diversify the learning topics and content levels of the daily science class program, to expand the opportunities of non-face-to-face science education for underprivileged learners, and to develop and share science content using the latest media.
3D printing has recently been used in various fields. Among various applications, 3D face data must be generated for 3D face printing. A laser scanner is used to acquire 3D face data, but there is a restriction that a person should not move during scanning. In this paper, we propose a 3D face modeling method based on a single image and a face transformation system to use the generated 3D face for virtual cosmetic surgery. We have defined facial feature points from the 3D face database for 3D face data generation. After extracting feature points from a single face image, 3D face of the input face image is generated corresponding to the 3D face feature points defined from the 3D face database. After 3D face modeling, 3D face modification part is applied for use such as virtual cosmetic surgery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.