In video surveillance system, the exposure of a person's face is a serious threat to personal privacy. To protect the personal privacy in large amount of videos, an automatic face detection method is required to locate and mask the person's face. However, in real-world surveillance videos, the effectiveness of existing face detection methods could deteriorate due to large variations in facial appearance (e.g., facial pose, illumination etc.) or degraded face (e.g., occluded face, low-resolution face etc.). This paper proposes a new face detection method based on multi-level facial features. In a video frame, different kinds of spatial features are independently extracted, and analyzed, which could complement each other in the aforementioned challenges. Temporal domain analysis is also exploited to consolidate the proposed method. Experimental results show that, compared to competing methods, the proposed method is able to achieve very high recall rates while maintaining acceptable precision rates.
Social media platforms such as Instagram and Facebook lead to potential security risks, which consequently raise public concerns about privacy. However, most people rarely make active efforts to protect their personal data, even though they have shown increasing concerns about privacy. Therefore, this study examines the factors that determine social media users' behavior of using privacy settings and testifies the existence of privacy paradox in such a context. In addition, it investigates the mediating effects of implementation intentions on the relationship between intentions and behaviors. In the study, we collected data through questionnaires, and the respondents were undergraduate and graduate students in South Korea. After a pilot test (n = 92) and a set of face-to-face interviews, 266 usable responses were retrieved for data analysis finally. The results confirmed the existence of the privacy paradox regarding the use of social media privacy settings. And the implication intention did positively mediate the relationship between intention and behavior in the context of social media privacy settings. To the best of our knowledge, our study is the first in the information privacy literature to introduce the notion of implementation intention which is a much more powerful explanation and prediction of actual behavior than the (behavioral) intention.
Recently, with the explosive increase of video streaming services, real-time live broadcasting has also increased, which leads to an infringement problem for user privacy. So, to solve such problems, we proposed the real image blurring system using dlib face-recognition library. 68 face landmarks are extracted and convert into 128 vector values. After that the proposed system tries to compare this value with the image in the database, and if it is over 0.45, it is considered as different person and image blurring processing is performed. With the proposed system, it is possible to solve the problem of user privacy infringement, and also to be utilized to detect the specific person. Through experimental results, the proposed system has an accuracy of more than 90% in terms of face recognition.
얼굴 인식 및 얼굴 생성이 다양한 분야에서 큰 주목을 받고 있지만, 얼굴 이미지를 모델 학습에 사용하는데 따른 개인 정보 문제는 최근 큰 문제가 되고 있다. 본 논문에서는 소수의 실제 얼굴 이미지와 안면 마스크 정보로부터 다양한 속성을 가진 얼굴 이미지를 생성함으로써 개인 정보 침해 이슈를 줄일 수 있는 얼굴 편집 네트워크를 제안한다. 다수의 실제 얼굴 영상을 이용하여 얼굴 속성을 학습하는 기존의 방법과 달리 제안하는 방법은 얼굴 분할 마스크와 얼굴 부분 텍스처 영상을 스타일 정보로 사용하여 새로운 얼굴 이미지를 생성한다. 이후 해당 이미지는 각 참조 이미지의 스타일과 위치를 학습하기 위한 훈련에 사용된다. 제안하는 네트워크가 학습되면 소수의 실제 얼굴 영상과 얼굴 분할 정보만을 사용하여 다양한 얼굴 이미지를 생성할 수 있다. 실험에서 제안 기법이 실제 얼굴 이미지를 매우 적게 사용함에도 불구하고 새로운 얼굴을 생성할 뿐만 아니라 얼굴 속성 편집을 지역화하여 수행할 수 있음을 보인다.
최근 유튜브와 같이 영상 콘텐츠를 보거나 제작하는 것에 관한 관심이 급증하고 있습니다. 그러나 개인 정보 보호 기술이 없이 동영상을 제작하게 되면, 출연을 원하지 않는 사람들이 공개적으로 노출되어 개인 정보 보호권을 침해할 수 있습니다. 본 논문은 이러한 문제를 해결하기 위해 얼굴을 식별하여 특정한 얼굴만 화면에 나오고 그 외에 다른 얼굴들은 Gaussian blur filter를 이용하여 흐리게 하여서 초상권을 보호하는 기술을 제안합니다. 이 논문의 핵심은 실시간 비디오에서 인물의 초상권을 보호하기 위한 주요 기술인 얼굴 식별 기술의 정확도를 높이기 위한 노력입니다. 본 논문은 얼굴 식별의 정확도를 높이기 위하여 추적 알고리즘을 사용하였으며 실시간 비디오에 적용하기 위하여 알고리즘을 변경하였습니다. 이 논문에서는 추적 알고리즘이 있는 경우와 없는 경우를 비교하여 결과를 보여줍니다.
Corona 19 minimizes face-to-face contact, and online untact platforms are emerging in the medical sector. However, there are potential risks of medicine expiration, medicine misuse, and responsible materials management for secure delivery. In this paper, we investigate three key functional requirements for online pharmacy, and design the blockchain based online pharmacy to meet the requirements. To protect the patient's privacy and to ensure tamper-free traceability, we incorporate the multi-level access authentication scheme for each participant (governments, medical circles, and patients). We show that our system guarantees patient's privacy without further system modification.
딥러닝 기반 얼굴 인증 모델은 높은 성능을 보이며 많은 분야에 이용되지만, 얼굴 이미지를 모델에 입력하는 과정에서 사용자의 얼굴 이미지가 유출될 가능성이 존재한다. 얼굴 이미지의 노출을 최소화하기 위한 방법으로 비식별화 기술이 존재하지만, 얼굴 인증이라는 특수한 상황에서 기존 기술을 적용할 때에는 인증 성능이 감소하는 문제점이있다. 본 논문에서는 원본 얼굴 이미지에 다른 인물의 얼굴 특성을 결합한 뒤, StyleGAN을 통해 비식별화 얼굴이미지를 생성한다. 또한, HopSkipJumpAttack을 활용해 얼굴 인증 모델에 맞춰 특징들의 결합 비율을 최적화하는 방법을 제안한다. 우리는 제안 방법을 통해 생성된 이미지들을 시각화하여 사용자 얼굴의 비식별화 성능을 확인하고, 실험을 통해 얼굴 인증 모델에 대한 인증 성능을 유지할 수 있음을 평가한다. 즉, 제안 방법을 통해 생성된 비식별화 이미지를 사용하여 얼굴 인증을 할 수 있으며, 동시에 얼굴 개인정보 유출을 방지할 수 있다.
가변생체인식(Changeable Biometrics)이란 생체정보의 도난이나 도용 시 개인의 프라이버시를 보호하기 위해 원 생체정보를 사용하지 않고, 생체정보를 변환하여 변환된 생체정보로 개인을 인증하는 방법이다. 본 논문은 통계적 형상 기반의 얼굴인식(Statistical appearance based face recognition)에 적용될 수 있는 가변얼굴템플릿 생성 방법에 대해 제안한다. 상이한 두 개의 통계적 형상 기반의 얼굴특징 방법을 이용하여 두 개의 얼굴특징벡터를 추출하고, 추출된 두 개의 얼굴특징벡터를 정규화 후 각 특징벡터들의 요소의 순서를 재배열 시킨다. 가변얼굴템플릿은 정규화 되고 순서가 재배열된 특징벡터들의 가중 합으로 생성된다. 두 개의 서로 다른 얼굴특징벡터의 가중 합으로 하나의 가변얼굴템플릿을 생성하므로, 가중 합의 방법과 생성된 가변얼굴템플릿을 알더라도 원 얼굴 특징벡터를 복원할 수 없다. 또한, 생성된 가변얼굴템플릿의 도난 시 새로운 가변얼굴템플릿의 생성은 각 벡터의 순서를 재배열시키는 규칙을 변경함으로써 가능하다. 그러므로 제안한 가변얼굴템플릿을 이용하여 개인 인증 시, 개인의 얼굴템플릿을 도난당하더라도 원 얼굴특징정보를 복원 할 수 없고 또한 새로운 가변얼굴템플릿으로 대체 할 수 있어 생체정보의 도난 시 발생할 수 있는 프라이버시 침해의 문제를 해결 할 수 있다. 제안한 방법은 AR-face DB를 이용하여 성능과 보안성에 대해 평가하였다.
Changeable biometries has been suggested as a solution to the problems of enhancing privacy. In this paper, we proposed changeable biometrics for face recognition using on ICA based approach. ICA coefficient vector extracted from an input face image. The vector is scrambled randomly and a new face template is generated by addition of a couple of scrambled coefficients. When a transformed template is compromised, it is replaced by a new scrambling rule and addition.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3328-3349
/
2020
With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users' privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users' behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users' privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary's background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users' privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.