• Title/Summary/Keyword: Fabrication

Search Result 13,059, Processing Time 0.041 seconds

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

A Case Study on the Project Benefit of Digital Fabrication in Construction Projects (건설 프로젝트에서 디지털 패브리케이션의 프로젝트 이점에 대한 사례 연구)

  • Jung, Eui-Seok;Kim, Sung-Jin;Ham, Nam-Hyuk;Moon, Sung-Kon;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Recently, the free-form buildings are continuously increasing in the world. However, due to the shortage of experience and technology in the project of the free-form buildings, problems such as increase of construction cost, increase of air and deterioration of construction quality are occurring. In this study, data on the 27 free-form projects in Korea and abroad using digital fabrication were collected through the journals, reports, articles, and websites of the institutes and case studies were conducted based on the collected data. Based on the following case analysis, we conducted evaluation of case data analysis based on the knowledge domain specified in PMBOK. Evaluation of case data analysis shows that the application of digital fabrication is divided into positive and negative effects for each knowledge area in the free-form building project. Using the results of the analysis, we can confirm the knowledge field showing the positive effect on the free-form building project by using digital fabrication. However, the data scale of the project using the digital fabrication is not realized at present and research is insufficient. In Korea, a small number of specialists were interviewed and verified because experts do not exist much in korea. Therefore, this study is expected to suggest the necessity of applying digital fabrication in the free-form building projects in the construction industry.

Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes (PBF와 DED 공정으로 제조된 17-4PH 스테인리스 강의 미세조직 및 기계적 특성 평가)

  • Yoon, Jong-Cheon;Lee, Min-Gyu;Choi, Chang-Young;Kim, Dong-Hyuk;Jeong, Myeong-Sik;Choi, Yong-Jin;Kim, Da-Hye
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • Additive manufacturing (AM) technologies have attracted wide attention as key technologies for the next industrial revolution. Among AM technologies using various materials, powder bed fusion (PBF) processes and direct energy deposition (DED) are representative of the metal 3-D printing process. Both of these processes have a common feature that the laser is used as a heat source to fabricate the 3-D shape through melting of the metal powder and solidification. However, the material properties of the deposited metals differ when produced by different process conditions and methods. 17-4 precipitation-hardening stainless steel (17-4PH SS) is widely used in the field of aircraft, chemical, and nuclear industries because of its good mechanical properties and excellent corrosion resistance. In this study, we investigated the differences in microstructure and mechanical properties of deposited 17-4PH SS by PBF and DED processes, including the heat treatment effect.

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes (불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용)

  • Han, Jeong-Sam;Gwak, Byeong-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Development of Biomimetic Scaffold for Tissue Engineering (조직공학을 위한 생체모사용 스캐폴드 개발)

  • Park, Su-A;Lee, Jun-Hee;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

Concrete Reinforcement Modeling with IFC for Automated Rebar Fabrication

  • LIU, Yuhan;AFZAL, Muhammad;CHENG, Jack C.P.;GAN, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.157-166
    • /
    • 2020
  • Automated rebar fabrication, which requires effective information exchange between model designers and fabricators, has brought the integration and interoperability of data from different sources to the notice of both academics and industry practitioners. Industry Foundation Classes (IFC) was one of the most commonly used data formats to represent the semantic information of prefabricated components in buildings, whereas the data format utilized by rebar fabrication machine is BundesVereinigung der Bausoftware (BVBS), which is a numerical data structure exchanging reinforcement information through ASCII encoded files. Seamless transformation between IFC and BVBS empowers the automated rebar fabrication and improve the construction productivity. In order to improve data interoperability between IFC and BVBS, this study presents an IFC extension based on the attributes required by automated rebar fabrication machines with the help of Information Delivery Manual (IDM) and Model View Definition (MVD). IDM is applied to describe and display the information needed for the design, construction and operation of projects, whereas MVD is a subset of IFC schema used to describe the automated rebar fabrication workflow. Firstly, with a rich pool of vocabularies practitioners, OmniClass is used in information exchange between IFC and BVBS, providing a hierarchy classification structure for reinforcing elements. Then, using International Framework for Dictionaries (IFD), the usage of each attribute is defined in a more consistent manner to assist the data mapping process. Besides, in order to address missing information within automated fabrication process, a schematic data mapping diagram has been made to deliver IFC information from BIM models to BVBS format for better data interoperability among different software agents. A case study based on the data mapping will be presented to demonstrate the proposed IFC extension and how it could assist/facilitate the information management.

  • PDF

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process (나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구)

  • Park Sang Hu;Lim Tae-Woo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Selective fabrication and etching of vertically aligned Si nanowires for MEMS

  • Kar, Jyoti Prakash;Moon, Kyeong-Ju;Das, Sachindra Nath;Kim, Sung-Yeon;Xiong, Junjie;Choi, Ji-Hyuk;Lee, Tae-Il;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.27.2-27.2
    • /
    • 2010
  • In recent years, there is a strong requirement of low cost, stable microelectro mechanical systems (MEMS) for resonators, microswitches and sensors. Most of these devices consist of freely suspended microcantilevers, which are usually made by the etching of some sacrificial materials. Herein, we have attempted to use Si nanowires, inherited from the parent Si wafer, as a sacrificial material due to its porosity, low cost and ease of fabrication. Prior to the fabrication of the Si nanowires silver nanoparticles were continuously formed on the surface of Si wafer. Vertically aligned Si nanowires were fabricated from the parent Si wafers by aqueous chemical route at $50^{\circ}C$. Afterwards, the morphological and structural characteristics of the Si nanowires were investigated. The morphology of nanowires was strongly modulated by the resistivity of the parent wafer. The 3-step etching of nanowires in diluted KOH solution was carried out at room temperature in order to control the fast etching. A layer of $Si_3N_4$ (300 nm) was used for the selective fabrication of nanowires. Finally, a freely suspended bridge of zinc oxide (ZnO) was fabricated after the removal of nanowires from the parent wafer. At present, we believe that this technique may provide a platform for the inexpensive fabrication of futuristic MEMS.

  • PDF