• Title/Summary/Keyword: Fabric hand evaluation

Search Result 83, Processing Time 0.02 seconds

Consumer recognition and mechanical property comparison of wetsuit material for diving (다이빙용 웨트수트(wetsuit) 소재에 대한 소비자 인식조사와 물성 비교)

  • Sang, Jeong Seon;Oh, Kyung Wha
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.163-174
    • /
    • 2018
  • Consumer and property evaluation of wetsuit materials were conducted to obtain useful data for developing competitive products that meet consumer expectations and improving industrial competitiveness. Data were collected through online surveys of 213 domestic consumers who have experienced wearing wetsuit among marine leisure activities. Five types of commercial wet suit materials by brand and four types of commercial wet suit materials with the same quality by thickness were collected. Then, their physical properties, salt water resistance and thermal insulation rate were evaluated and compared. As a result, the most commonly used wetsuit material is 3 to 5 mm thick, and the basic jersey material is bonded on both sides. As a processing for imparting functionality, processing for improving warmth and reducing surface resistance are most frequently used. Consumers often feel uncomfortable when wearing a wetsuit, such as wearing comfort, weight, ease of movement, stretchability, and clothing pressure, which are different from those of casual wear. Also, mechanical strength and warmth were considered to be the most important criteria for selection of wetsuit material for purchase or rental. The mechanical properties of brand A and B were better than those of brand C, D, and E. Resilience and thermal shrinkage were better in brand C, D, and E. On the other hand, there was no significant difference in the physical properties due to the difference in thickness of the material at the same quality. Also, it was found that the thicker the material, the more stable it is in the heat. Brand A and B had superior salt water resistance than brand C, D, and E. In the thermal insulation test, brand A and B showed better insulation characteristics than brand C, D, and E, but the types of bonded fabric and surface finishing of materials were thought to have affected. In comparison of the thickness, the thicker the materials, the better the salt resistance and the thermal insulation.

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.