• Title/Summary/Keyword: Fab'

Search Result 552, Processing Time 0.031 seconds

Development of Quantitative Exposure Index in Semiconductor Fabrication Work (반도체 FAB근무에 대한 정량적 노출지표 개발)

  • Shin, Kyu-Sik;Kim, Taehun;Jung, Hyun Hee;Cho, Soo-Hun;Lee, Kyoungho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Objectives: It is difficult to identify exposure factors in the semiconductor industry due to low exposure levels to hazardous substances and because various processes take place in fabrication (FAB). Furthermore, a single worker often experiences a variety of job histories, so it is difficult to classify similar exposure groups (SEG) in the semiconductor industry. Therefore, we intend to develop a new exposure index, the period of working in FAB, that is applicable to the semiconductor industry. Methods: First, in specifying the classification of jobs, we clearly distinguished whether they were FAB workers or non-FAB workers. We checked FAB working hours per week through questionnaires administered to FAB workers. We derived an exposure index called FAB-Year that can represent the period of working in FAB. FAB-Year is an index that can quantitatively indicate the period of working in FAB, and one FAB-Year is defined as working in FAB for 40 hours per week for one year. Results: A total of 8,453 persons were surveyed, and male engineers and female operators occupied 90% of the total. The average total years of service of the subjects was 9.7 years, and the average FAB-Year value was 6.8. This means that the FAB-working ratio occupies 70% of total years of service. The average FAB-Year value for female operators was 8.4, for male facility engineers it was 7.7, and for male process engineers it was 3.5. A FAB-Year standardization value according to personal information (gender, job group, entry year, retirement year) for the survey subjects can be calculated, and standardized estimation values can be applied to workers who are not participating in the survey, such as retirees and workers on a leave of absence (LOA). Conclusions: This study suggests an alternative method for overcoming the limitations on epidemiological study of the semiconductor industry where it is difficult to classify exposure groups by developing a new exposure index called FAB-Year. Since FAB-Year is a quantitative index, we expect that various approaches will be possible in future epidemiological studies.

Triclosan Resistance in a Bacterial Fish Pathogen, Aeromonas salmonicida subsp. salmonicida, is Mediated by an Enoyl Reductase, FabV

  • Khan, Raees;Lee, Myung Hwan;Joo, Haejin;Jung, Yong-Hoon;Ahmad, Shabir;Choi, Jinhee;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.511-520
    • /
    • 2015
  • Triclosan, the widely used biocide, specifically targets enoyl-acyl carrier protein reductase (ENR) in the bacterial fatty acid synthesis system. Although the fish pathogen Aeromonas salmonicida subsp. salmonicida exhibits triclosan resistance, the nature of this resistance has not been elucidated. Here, we aimed to characterize the triclosan resistance of A. salmonicida subsp. salmonicida causing furunculosis. The fosmid library of triclosan-resistant A. salmonicida subsp. salmonicida was constructed to select a fosmid clone showing triclosan resistance. With the fosmid clone showing triclosan resistance, a subsequent secondary library search resulted in the selection of subclone pTSR-1. DNA sequence analysis of pTSR-1 revealed the presence of a chromosomal-borne fabV-encoding ENR homolog. The ENR of A. salmonicida (FabVas) exhibited significant homology with previously known FabV, including the catalytic domain YX(8)K. fabVas introduction into E. coli dramatically increased its resistance to triclosan. Heterologous expression of FabVas might functionally replace the triclosan-sensitive FabI in vivo to confer E. coli with triclosan resistance. A genome-wide search for fabVas homologs revealed the presence of an additional fabV gene (fabVas2) paralog in A. salmonicida strains and the fabVas orthologs from other gram-negative fish pathogens. Both of the potential FabV ENRs expressed similarly with or without triclosan supplement. This is the first report about the presence of two potential FabV ENRs in a single pathogenic bacterium. Our result suggests that triclosan-resistant ENRs are widely distributed in various bacteria in nature, and the wide use of this biocide can spread these triclosan-tolerant ENRs among fish pathogens and other pathogenic bacteria.

Screening of New Antibiotics Inhibiting Bacterial Enoyl-Acyl Carrier Protein Reductase (Fabl) (세균의 지방산 생합성 효소 (Enoyl-Acyl Carrier Protein Reductase, FabI)를 저해하는 새로운 항균물질의 스크리닝)

  • 곽진환
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • Enoyl-Acyl Carrier Protein Reductase (Fabl) of bacteria is hem as an important target for new antibacterial drugs and plays a determinant role in completing cycles of elongation in type-H fatty acid synthase system. In this study, a fabI gene from Staphylococcus aureus 6538p cloned in pET-l4b vector and FabI protein was over-produced in Escherichaia coli BL2l (DE3). $NH_2$-terminal His-tagged FabI protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metalaffinity chromatography Purified 6xHis-tagged FabI showed a catalytic activity on tram - 2 - octenoyl - N -acethlcysteamine by utilizing NADPH as a cofactor. For the discovery of new FabI inhibitors from chemical libraries, a target-oriented screening system using a 96-well plate was developed. About 10,000 chemical libraries from Korea Chemical Bank wore tested in this screening system, and 26 chemicals (0.25%) among them showed an inhibitory activity against FabI enzyme. This result showed that a new screening system can be used for the discovery of new FabI inhibitors.

Model-based Estimation of Production Parameters of Electronics FAB Equipment (모델기반의 전자부품 FAB설비 생산기준정보 추정)

  • Kang, Dong-Hun;Kim, Min-Kyu;Choi, Byoung-Kyu;Park, Bum-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.166-173
    • /
    • 2007
  • In this paper, we propose a model-based approach to estimating production parameters of semiconductor FAB equipment. For FAB scheduling, for example, we need to know equipment's production parameters such as flow time, tact time, setup time, and down time. However, these data are not available, and they have to be estimated from material move data such as loading times and unloading times that are automatically collected in modern automated semiconductor FAB. The proposed estimation method may be regarded as a Bayes estimation method because we use additional information about the production parameters. Namely, it is assumed that the technical ranges of production parameters are known. The proposed estimation method has been applied to a LCD FAB, and found to be valid and useful.

Increase of Spacer Sequence Yields Higher Dimer $(Fab-Spacer-Toxin)_{2}$ Formation

  • Yoo Mee-Hyeon;Won Jae-Seon;Lee Yong-Chan;Choe Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1097-1103
    • /
    • 2006
  • The divalent antibody-toxins are expected to have increased binding avidities to target cells because of the two cell-binding domains. However, previous studies showed that the refolding yield of divalent antibody-toxin is very low, and it is assumed that homodimer formation of antibody-toxin is strongly interfered by the repulsion between the two large toxin domains that come close to each other during dimer formation. In this study, B3 antibody was used as a model antibody, and its Fab domain was used to construct three different kinds of Fab divalent molecules, $[B3(Fab)-toxin]_{2}$. The monomer Fab-toxin molecules were made by fusing the Fab domain of monoclonal antibody B3 to PE38, a truncated mutant form of Pseudomonas exotoxin (PE), and a connecting sequence that contained spacer amino acid sequence (G4S)n (n=l, 2, 3) was inserted between Fab and PE38. The prepared divalent molecules were $[Fab-S\;1,\;2,\;3-PE38]_{2}\;(=[Fab-SKPCIST-KAS(G_{4}S)nGGPE-PE38]_{2}\;(n=1,\;2,\;3))$, and they are derivatives of previously studied $[Fab-H2cys-PE38]_{2}\;(=[Fab-SKPCIST-KASGGPE-PE38]_{2})$. In $[Fab-Sl,\;2,\;3-PE38]_{2}$, two Fab-S1, 2, 3-PE38 monomers were covalently linked by the disulfide bond bridge made from cysteine in the -SKPCIST- sequence. The insertion of spacer amino acids after the disulfide bridge resulted in a 12-18 fold higher yield of dimer formation than previously constructed $[Fab-Hlcys-PZ38]_{2}[7]$, 3-4-fold higher than $[Fab-ext-PZ38]_{2}[25]$. These two molecules have less amino acid spacer sequence between the disulfide bridge and PE38 domain. The design of $[Fab-PE38]_{2}$ in this study gave molecules with a higher refolding yield. The results of cytotoxicity assay showed a higher cytotoxic effect of these divalent molecules than that of the monovalent scFv-PE38 molecule.

Study of Interrelationship in Five Mimic-Animal Boxing and Viscera (방생도인(仿生導引) 오금희(五禽戱)와 장부(臟腑)와의 상관성 연구)

  • Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Five mimic-animal boxing(五禽戱, FAB) is physical fitness exercises conducted by imitating the motions of tiger, deer, bear, monkey, and bird, devised by the famous doctor Hwa-Ta(華陀) in the Three Kingdoms of China. FAB is one of bionic-physical and breathing exercises(傍生導引) by combined automassage as a practice for health care. Although FAB have effects of health control and medical treatment, but interrelationship of five animals(五禽) of FAB and five viscera(五臟) of five elements(五行) is complicated. So, the present was designed to investigate the progress of FAB, movement-feature of FAB, and the interrelationship of five animals and five viscera. further I will develop value by sports-treatment medicine in oriental medicine. The results were as follows ; FAB is physical exercises of dynamic exercises and new-dynamic exercises. Feature of China-FAB have each movement by imitating the motions of each animals, movements of Formosa-FAB were mixed. In philosophical viewpoint, Five animals (tiger, deer, bear, monkey, bird) were attached to metal, wood, water, earth, fire of five elements, and lung, liver, kidney, spleen, heart of five viscera. In viewpoint of breathing exercises, Five animals (tiger, deer, bear, monkey, bird) were attached to water, wood, earth, fire, metal of five elements, and kidney, liver, spleen, heart, lung of five viscera. Although FAB have effects of health control and medical treatment, FAB have indication and contraindication. Therefore, I think that mechanism of treatment should reason with Oriental medicine doctor in FAB.

A new purification method for the Fab and F(ab)2 fragment of 145-2C11, hamster anti-mouse CD3ε antibody

  • Kwack, Kyu-Bum
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.188-192
    • /
    • 2000
  • Recombinant protein G has been utilized in the purification of antibodies from various mammalian species based on the interaction of antibodies with protein G. The interaction between immunoglobulin and protein G may not be restricted to the Fc protion of antibodies, as many different $F(ab)_2$ or Fab fragments can also bind to protein G. I found both FAb $F(ab)_2$ of 145-2C11, a hamster anti-mouse $CD3{\varepsilon}$ antibody, bound to the protein G-sepharose. Interestingly, Fab and $F(ab)_2$ of 145-2C11 did not bind to the protein A-sepharose. The binding of Fab and $F(ab)_2$ of 145-2C11 to protein G provided a useful method to remove proteases, chopped fragments of the Fc region, and other contaminating proteins. The remaining intact antibody in the protease reaction mixture can be removed by using a protein A-sepharose, because the Fab and $F(ab)_2$ portions of 145-2C11 did not bind to protein A-sepharose. The specific binding of Fab and $F(ab)_2$ portions of 145-sC11 to a protein G-sepharose (though not to a protein A-sepharose) and binding of intact 145-2C11 to both protein A- and G-sepharose will be useful in developing an effective purification protocol for Fab and $F(ab)_2$ portions of 145-2C11.

  • PDF

Production of Recombinant Humanized Anti-HBsAg Fab Fragment from Pichia pastoris by Fermentation

  • Deng, Ning;Xiang, Junjian;Zhang, Qing;Xiong, Sheng;Chen, Wenyin;Rao, Guirong;Wang, Xunzhang
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.294-299
    • /
    • 2005
  • In this report, we describe the high-yield secretory expression of the recombinant human anti-HBsAg Fab fragment from Pichia pastoris that was achieved by co-integration of the genes encoding the heavy and light chains (both under the control of alcohol oxidase promoter) into the genome of the yeast cells. The fed-batch fermentations were carried out in a 5 L scale. Both chains of the Fab were successfully expressed upon methanol induction. The absorbance ($OD_{600}$) of the broth can reach 350~500 at the end of fed-batch phase. After the induction, the expression level of the recombinant Fab (soluble) reached 420~458 mg/L. The recombinant Fab fragment was purified from the crude culture supernatant by ion exchange chromatography and the purity of the recombinant Fab fragment was over 95%. The affinity activities of the crude fermentation supernatant and the purified Fab were analyzed by indirect ELISA, which showed that the purified recombinant Fab fragment had high affinity activity with hepatitis B surface antigen.

The Operational Optimization of Semiconductor Research and Development Fabs by FAB-wide Scheduling (FAB-Wide 스케줄링을 통한 반도체 연구라인의 운용 최적화)

  • Kim, Young-Ho;Lee, Jee-Hyong;Sun, Dong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.692-699
    • /
    • 2008
  • Semiconductor research and development(R&D) fabs are very different than production fabs in many ways such as the scales of production, job priority, production methods, and performance measures. Efficient operations of R&D fabs are very important to the development of new product, process stability, high yield, and ultimately company competitiveness. This paper proposes the fab-wide scheduling method for operational optimization of the R&D fabs. Most scheduling systems of semiconductor fabs have only focused on maximizing throughput of each separated areas without considering WIP(works in process) flows of entire fab. In this paper, we proposes the a fab-wide scheduling system which schedules all lots to entire fab equipment at once. We develop the MIP(mixed integer programing) model which allocates the lots to production equipment considering many constraints of all processes and the CP(constraint programming) model which determines the sequences of the lots in the production equipment. The proposed FAB-wide scheduling model is applied to the newly constructed R&D fab. As a result, we have accomplished the system based automated job reservation, decrease of the hot lot delay, increase of the queue time satisfaction, the high throughput by maximizing the batch sizes, decrease of the WIP TAT(Turn Around Time).