• Title/Summary/Keyword: FVCOM

Search Result 11, Processing Time 0.033 seconds

Modeling the effect of nutrient enrichment on the plankton population: Validation using mesocosm experiment data (영양염 증가에 따른 부유생태계 반응 모의: FVCOM을 이용한 중형폐쇄생태계(Mesocosm) 자료 재현)

  • Song, Yong-Sik;Choi, Hee-Seon J.;Yoo, Sang-Cheol;Hong, Hyeon-Pyo;Seo, Ji-Ho;Lee, Hyo-Jin;Kim, Tae-In;Woo, Seung-Buhm;Choi, Jung-Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.358-368
    • /
    • 2011
  • Responses of plankton populations to nutrient enrichment in mesocosm experiments in Shihwa lake were simulated using FVCOM. Dissoloved oxygen module was added to the FVCOM to simulate impacts of its decreased levels. The ecological model included the major components of the pelagic ecosystem including nutrients, phytoplankton (pico-, nano-, micro-), zooplankton (two groups of protozoa, mesozooplankton), particulate organic matter, dissolved organic matter and bacteria, and was calibrated using trophodynamic data collected from Gyeonggi Bay and Shihwa Lake. The model was able to reproduce major responses of plankton populations to nutrient enrichment, including phytoplankton of different size groups, change of dominance of protozoa from < 20 ${\mu}m$ oligotrichs to scuticociliates, and reponses to bacteria and low levels of dissolved oxygen in water column of the mesocosms.

Geovisualization of Coastal Ocean Model Data Using Web Services and Smartphone Apps (웹서비스와 스마트폰앱을 이용한 연안해양모델 예측자료의 시각화시스템 구현)

  • Kim, Hyung-Woo;Koo, Bon-Ho;Woo, Seung-Buhm;Lee, Ho-Sang;Lee, Yang-Won
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.63-71
    • /
    • 2014
  • Ocean leisure sports have recently emerged as one of so-called blue ocean industries. They are sensitive to diverse environmental conditions such as current, temperature, and salinity, which can increase needs of forecasting data as well as in-situ observations for the ocean. In this context, a Web-based geovisualization system for coastal information produced by model forecasts was implemented for use in supporting various ocean activities. First, FVCOM(Finite Volume Coastal Ocean Model) was selected as a forecasting model, and its data was preprocessed by a spatial interpolation and sampling library. The interpolated raster data for water surface elevation, temperature, and salinity were stored in image files, and the vector data for currents including speed and direction were imported into a distributed DBMS(Database Management System). Web services in REST(Representational State Transfer) API(Application Programming Interface) were composed using Spring Framework and integrated with desktop and mobile applications developed on the basis of hybrid structure, which can realize a cross-platform environment for geovisualization.

Prediction of response of Ulsan coastal area using downscaling model (다운스케일링 기법을 이용한 울산만의 물리 특성 변화 예측)

  • Kim, Bo Ram;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.81-81
    • /
    • 2015
  • 전 지구적 기후변화는 대기-해양의 물리 특성을 변화시켜, 연안 및 하구의 수온상승과 염도 변화의 주요 원인이 되며, 생태 환경 및 다양한 경제 사회 문제를 야기 시킬 수 있다. 이러한 변화를 예측하고 영향을 최소화 하기위해서는 연안의 물리 특성을 세밀하고 정확하게 예측해야 한다. 그러나, 기후변화의 영향을 고려한 대기-해양 전 지구모델의 기후변화 시나리오는 우리나라와 같이 작고 복잡한 연안 지형을 가진 지역의 미래 환경 변화 예측에 적합하지 않다. 본 연구에서는 저해상도 정규격자 모형인 RIAMOM(RIAM Ocean Model)의 결과를 이용하여 비정규격자 모형인 FVCOM(Finite Volume Coastal Ocean Model)으로 울산만의 미래 물리 특성 변화를 상세 예측하였다. 기후변화로 인한 대기-해양의 물리 특성 변화를 고려하여 한국 주변해 및 연안을 대상으로 모의한 RIAMOM의 결과를, 본 연구의 대상 지역인 울산만 FVCOM 모델 경계에 초기 값과 시계열 자료로 사용하였다. FVCOM 모의 결과를 RIAMOM 자료와 비교 했을 때, 초기 표층 염분과 수온이 각각 0.4%, 2%의 오차를 보였다. 조위는 개방경계에서 01~0.4% 정도의 오차가 나타나, 다운스케일링(downscaling) 기법을 통한 수치 모의 결과가 초기 수온과 염분 및 조위 특성을 잘 재현하는 것으로 나타났다. 2001년(현 상태), 2050년(미래), 해수면 상승의 영향을 고려한 2050년에 대하여 모의 한 결과. 정규격자 모형인 RIAMOM에서 나타나지 않았던 기후변화로 인한 표층 염분과 수온의 상세한 변화가 울산만의 태화강 하구에서 나타났고, 염수쐐기의 길이 또한 상류쪽으로 증가하는 결과를 나타내었다. 다운스케일링을 통한 대상 지역의 상세 모델을 통해 기존의 예측 모델에서도출할 수 없던 결과를 나타낸 바, 향후 연구를 통해 지역의 장기 상세 환경 변화 예측에 활용할 수 있을 것으로 예상한다.

  • PDF

Experimental Study of Estimating the Optimized Parameters in OI (서남해안 관측자료를 활용한 OI 자료동화의 최적 매개변수 산정 연구)

  • Gu, Bon-Ho;Woo, Seung-Buhm;Kim, Sangil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.458-467
    • /
    • 2019
  • The purpose of this study is the suggestion of optimized parameters in OI (Optimal Interpolation) by experimental study. The observation of applying optimal interpolation is ADCP (Acoustic Doppler Current Profiler) data at the southwestern sea of Korea. FVCOM (Finite Volume Coastal Ocean Model) is used for the barotropic model. OI is to the estimation of the gain matrix by a minimum value between the background error covariance and the observation error covariance using the least square method. The scaling factor and correlation radius are very important parameters for OI. It is used to calculate the weight between observation data and model data in the model domain. The optimized parameters from the experiments were found by the Taylor diagram. Constantly each observation point requires optimizing each parameter for the best assimilation. Also, a high accuracy of numerical model means background error covariance is low and then it can decrease all of the parameters in OI. In conclusion, it is expected to have prepared the foundation for research for the selection of ocean observation points and the construction of ocean prediction systems in the future.

Simulation of Vessel Movement in Ancient Port of Hwaseong Coast Using Marine Physics Model (해양물리모델을 이용한 화성 연안 고대포구의 선박 이동 모의)

  • Lee, Seungtae;Han, Min;Yang, Dong-Yoon;Cho, Yang-Ki;Park, Chanhyeok;Yu, Jaehyung
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.137-148
    • /
    • 2022
  • In this study, ship movement simulation was performed based on a marine physics model for the ancient port presumed under the past environmental conditions in the coastal area of Hwaseong, which played an important role as a center of trade in the Three Kingdoms and Unified Silla periods. The paleo topographical surface was reconstructed through the analysis of borehole sediments, and the paleo coastline was extracted through the geomorphological maps published during before independence. Based on the established paleo environmental conditions of the Hwaseong coast, the marine physics model (FVCOM) was used to simulate the flow of surface currents and the route of floating materials assumed to be ancient ships. As a result, the processes of moving ships from the port to the open sea in the Eunsupo area, which is estimated location of the ancient port related to Dangseong, was well simulated, and thus the reliability of the location of the ancient port estimated by the scientific method was secured. This study is significant as a result of convergence research that encompasses archeology, history, geomorpology, geology, and oceanography.

Numerical Modeling of Circulation and Salinity Distribution in Seomjin River Estuary

  • Made Narayana Adibhusana;Yonguk Ryu;Taehwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.526-526
    • /
    • 2023
  • Water circulation plays a crucial role in regulating the salinity of estuaries, which is essential for the survival of estuarine organisms. Changes in freshwater inflows or sea level can have significant impacts on the distribution and abundance of species within these ecosystems. To better understand these dynamics, this paper presents a study of water circulation and salinity distribution in Seomjin River estuary using the Finite Volume Coastal Ocean Model (FVCOM) numerical model. An extreme scenario was simulated to assess the potential impact of tidal currents and river flow discharge on circulation and salinity distribution. The results of this study have important implications for managing estuarine ecosystems and conserving their associated biodiversity.

  • PDF

Fresh Water Flume Analysis Using an Unstructured Grid Ocean Circulation Model (비정규격자계 해양순환 모델을 이용한 하구에서의 담수 유출분석)

  • Hwang, Jin-Hwan;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.227-234
    • /
    • 2009
  • Using a finite volume ocean circulation model based on an unstructured grid (FVCOM), we studied the structure of a fresh water bulge that influences on the Region Of Freshwater Influence. Fresh water discharged a river forms a coastal boundary current to the righthand side and a cyclonically circulation freshwater bulge that grows with time. In the middle of the bulge, vertical motions bring fresh water to the bottom. When tidal motions are included, the bulge disappears while the boundary currents becomes wider. Through a simple comparison of areas occupied low salinity water we quantified vertical and horizontal mixing due to the tide and showed that the tidal motion enhances the vertical mixing. During the first few tidal cycles right after the onset of the river discharge, due to tidal excursion the horizontal mixing becomes stronger. The vertical mixing by the tide mixes the fresh water After a certain time the water around the river mouth is well mixed and the horizontal excursion of the fresh water near the river mouth does not have much effect on the horizontal mixing. When there is no tidal motion horizontal mixing is mainly by the inertial instability at the surface and the horizontal mixing becomes stronger over time.

  • PDF

Web MGIS with SVG of Kosrae Costal Waters, Micronesia (SVG를 이용한 마이크로네시아 코스레 주변해역 Web MGIS 구축)

  • Park, Sang-Woo;Kim, Jung-Hyun;Lee, Moon-Ock;Kim, Hyeon-Ju;Kim, Jongkyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.485-491
    • /
    • 2014
  • The study of Web MGIS(Marine Geographic Information System) based on the SVG(Scalable Vector Graphics) is mainly performed on effective methodologies which transform real world data to computing world data. Web GUI system has its own target on reliable data service by acquisition of geometric information using HYCOM(HYbrid Coordinate Ocean Model), accurate measurement and graphical visualization. This type of raw data visualization can be built without software tools, yet is incredibly useful for interpreting and communicating data. Even simple visualizations can aid in the interpretation of complex hydrodynamic relationships that are frequently encountered in the marine environment. The Web MGIS provides an easy way for hydrodynamic geoscientists to construct complex visualizations that can be viewed with free software. This study proposes a Web GUI MGIS using FVCOM(Finite Volume Coastal Ocean Model). Finally, we design a Marine Web GUI system of Kosrae Coastal Waters integrating above data models. It must adds more ecological information and the various service item for approach more easily in order to user.

Characteristics of Mass Transport Depending on the Feature of Tidal Creek at Han River Estuary, Gyeong-gi Bay, South Korea (경기만 염하수로에서의 비정규 격자 수치모델링을 통한 조간대 조수로의 고려에 따른 Mass Transport 특성)

  • Kim, Minha;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.41-51
    • /
    • 2013
  • The tidal creek dependent mass transport characteristic in Gyeong-Gi Bay (west coast of Korea) was studied using field measured data and numerical model. Gyeong-Gi Bay consists of 3 main tidal channels and contains a well-developed vast tidal flat. This region is famous for its large tidal difference and strong current. We aim to study the effect of tidal creek in the tidal flat on the mass exchange between the estuary and the ocean. For numerical application, the application of unstructured grid feature is essential, since the tidal creek has complicated shape and form. For this purpose, the FVCOM is applied to the study area and simulation is performed for 2 different cases. In case A, geographic characteristics of the tidal creek is ignored in the numerical grid and in case B, the tidal creek are constructed using unstructured grid. And these 2 cases are compared with the field measured cross-channel mass transport data. The cross-channel mass transport at the Yeomha waterway mouth and Incheon harbor was measured in June, 9~10 (Spring tide) and 17~18 (Neap tide), 2009. CTD casting and ADCP cross-channel transect was conducted 13 times in one tidal cycle. The observation data analysis results showed that mass transport has characteristic of the ebb dominance Line 1 (Yeomha waterway mouth), on the other hand, a flood dominant characteristic is shown in Line 2 (Incheon harbor front). By comparing the numerical model (case A & B) with observation data, we found that the case B results show much better agreement with measurement data than case A. It is showed that the geographic feature of tidal creek should be considered in grid design of numerical model in order to understand the mass transport characteristics over large tidal flat area.

Local Winds Effects on the Water Surface Variation at the Shallow Estuary, Mobile Bay (해수순환모델(FVCOM)을 이용한 하구의 조위 변화에 미치는 국부적 바람의 영향)

  • Lee, Jungwoo;Yun, Sang-Leen;Oh, Hye-Cheol;Kim, Seog-Ku;Lee, Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.570-578
    • /
    • 2014
  • A three-dimensional ocean circulation model was applied to a shallow estuary, Mobile Bay, to study local wind setup and setdown. Tides started from the northern Gulf of Mexico propagates up to the Mobile River system which is located in the north of the Mobile Bay. However, the tides started in the south of Mobile Bay were distorted when travelling upstream while affected by river discharge and local winds. The water surface elevation was less/over predicted responding north/south winds, respectively, when winds only at the Dauphin Island station (DPI) were used. However, the model predicted water surface elevation better when using two local winds from DPI and Mobile Downtown Airport (MDA). Wind speeds were greatly reduced (~ 88%) in about 43 km distance between DPI and MDA, and the canopy effects may be the reason for this. For this reason, the local winds are greatly responsible for local surface elevation setup and setdown especially at the shallow estuary like Mobile Bay.