DOI QR코드

DOI QR Code

Experimental Study of Estimating the Optimized Parameters in OI

서남해안 관측자료를 활용한 OI 자료동화의 최적 매개변수 산정 연구

  • Gu, Bon-Ho (Department of Oceanography, Inha University) ;
  • Woo, Seung-Buhm (Department of Oceanography, Inha University) ;
  • Kim, Sangil (Department of Mathematics, Pusan National University)
  • Received : 2019.11.18
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

The purpose of this study is the suggestion of optimized parameters in OI (Optimal Interpolation) by experimental study. The observation of applying optimal interpolation is ADCP (Acoustic Doppler Current Profiler) data at the southwestern sea of Korea. FVCOM (Finite Volume Coastal Ocean Model) is used for the barotropic model. OI is to the estimation of the gain matrix by a minimum value between the background error covariance and the observation error covariance using the least square method. The scaling factor and correlation radius are very important parameters for OI. It is used to calculate the weight between observation data and model data in the model domain. The optimized parameters from the experiments were found by the Taylor diagram. Constantly each observation point requires optimizing each parameter for the best assimilation. Also, a high accuracy of numerical model means background error covariance is low and then it can decrease all of the parameters in OI. In conclusion, it is expected to have prepared the foundation for research for the selection of ocean observation points and the construction of ocean prediction systems in the future.

본 연구는 자료동화에 필요한 매개변수의 최적화된 값를 산정하기 위해 서남해안을 포함하는 한반도 중심해역에 해양순환수치모델 FVCOM(Finite Volume Community Ocean Model)을 구축 및 검증하고 이에 연속관측된 수층별 유속자료와 OI(Optimal Interpolation)를 자료동화하였다. 자료동화에는 서남해안에 위치한 4정점에서 ADCP(Acoustic Doppler Current Profiler)을 통해 관측된 수층별 유속자료를 사용하였다. 자료동화에 사용된 배경 모델은 복잡하고 불규칙한 지형적 특성을 가진 서남해안 중심의 한반도 해역을 비구조격자체계의 해양순환수치모델인 FVCOM으로 구성하고 이를 조석검증하였다. 최적내삽법의 Correlation length와 Scale factor는 자료동화 과정에서 관측값의 영향 범위를 결정하고 오차를 보정할 수 있는 매개변수다. 자료동화기법 내 매개변수는 연구 지역에 존재하는 해양학적 특성에 따라 능동적으로 변동되기 때문에 이를 토대로 경험적인 산정 연구가 필요하다. 따라서 서남해안에서 요구되는 각 매개변수들을 Taylor diagram을 활용하여 관측정점별로 분석하고 최적값을 산정하였다. 산정된 최적매개변수는 관측정점마다 요구되는 값이 상이하며 연안에서 외해로 갈수록 증가하는 추세를 보인다. 추가로 조석검증 전과 후에 따른 배경 모델이 갖는 정확성이 자료동화 효과에 미치는 영향을 분석하였다. 조석검증을 통해 정확성이 높아진 배경 모델은 배경오차공분산이 상대적으로 감소됨에 따라서 총 비중 함수가 0에 가까워지고 결과적으로 최적매개변수값이 감소하였다. 이러한 최적매개변수는 광역 모델이 갖고 있는 연안역까지 도달하는 개방경계의 한계점을 완화시켜줄 것으로 기대하며 향후 관측정점별로 요구되는 최적매개변수값을 독립적으로 적용하도록 개선한다면 향상된 해양예측 시스템 개발에 도움이 될 것으로 기대한다.

Keywords

References

  1. Bennett, A.F. (2002). Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press.
  2. Chang, P.-H., Isobe, A., Kang, K.-R., Ryoo, S.-B., Kang, H.-S. and Kim, Y.-H. (2014). Summer behavior of the Changjiang diluted water to the East/Japan Sea: A modeling study in 2003. Continental Shelf Research, 81, 7-18. https://doi.org/10.1016/j.csr.2014.03.007
  3. Chen, C., Liu, H. and Beardsley, R.C. (2003). An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20, 159-186. https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
  4. Cressman, G.P. (1959). An operational objective analysis system. Monthly Weather Review, 87, 367-374. https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
  5. Hoyer, J.L. and She, J. (2007). Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea. Journal of Marine Systems, 65(1-4), 176-189. https://doi.org/10.1016/j.jmarsys.2005.03.008
  6. Kang, S.K., Lee, S.-R. and Yum, K.-D. (1991). Tidal computation of the East China Sea, the Yellow Sea, and the East Sea. Elsevier Oceanography Series, 54, 25-48. https://doi.org/10.1016/S0422-9894(08)70084-9
  7. Kim, Y.-G. and Kim, K. (1999). Intermediate waters in the East/ Japan Sea. Journal of Oceanography, 55, 123-132. https://doi.org/10.1023/A:1007877610531
  8. Kurapov, A.L. (2005). Assimilation of moored velocity data in a model of coastal wind-driven circulation off Oregon: Multivariate capabilities. Journal of Geophysical Research, 110(C10), 1-20. https://doi.org/10.1029/2004JC002493
  9. Lee, H.J., Yoon, J.-H., Kawamura, H. and Kang, H.-W. (2003). Comparison of RIAMOM and MOM in Modeling the East Sea/Japan Sea Circulation. Ocean Polar Research, 25(3), 287-302. https://doi.org/10.4217/OPR.2003.25.3.287
  10. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model round Japan. Journal of Oceanography, 56, 567-581. https://doi.org/10.1023/A:1011157212596
  11. Reynolds, R.W. and Smith, T.M. (2009). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6), 929-948. https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
  12. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  13. Seo, S.N. (2008). Digital 30sec Gridded Bathymetric Data of Korean Marginal Seas - KorBathy30s. Journal of Korean Society of Coastal and Ocean Engineers, 20(1), 110-120 (in Korean).
  14. Talagrand. (1997). Assimilation of Observations, and Introduction. Journal of the Meteorological Society of Japan, 75(1), 191-209. https://doi.org/10.2151/jmsj1965.75.1B_191
  15. Taylor, K.E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, 106, 7183-7192. https://doi.org/10.1029/2000JD900719
  16. Teague, W.J., Pistek, P., Jacobs, G.A. and Perkins, H.T. (2000). Evaluation of tides from TOPEX in the Bohai and Yellow Sea. Journal of Atmospheric and Oceanic Technology, 17, 679-687. https://doi.org/10.1175/1520-0426(2000)017<0679:EOTFTP>2.0.CO;2
  17. Weare, B.C., Navato, A.R. and Newell, R.E. (1976). Empirical Orthogonal Analysis of Pacific Sea Surface Temperatures. Journal of Physical Oceanography, 6(5), 671-678. https://doi.org/10.1175/1520-0485(1976)006<0671:EOAOPS>2.0.CO;2
  18. Xu, Y. and Shen, Y. (2013). Reconstruction of the land surface temperature time series using harmonic analysis. Computers and Geosciences, 61, 126-132. https://doi.org/10.1016/j.cageo.2013.08.009